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ABSTRACT

//II 

The transition-coupled asynchronous counter is a single-

input sequential circuit containing interstage pulse coupling

in the form of transition signals, produced by the memory units

in the process of switching.

In this study, a logic algebra is introduced for describing

the action of a transition-coupled circuit having roughly

uniform interstage delays and comparatively small delays due to

combinational circuitry. Called subinterval logic, it envisions

all action in the circuit as taking place at a finite set of

discrete event times.

A matrix method for deriving loop equations for transitions

in a transition-coupled circuit is described and a test for

inherent stability of the circuit is formulated.

A simple matrix technique for the analysis of a stable

transition-coupled counter is derived. It includes a test for

input critical races.

A standard-algebraic method for the synthesis of transition-

coupled counters is described. This method uses the standard

binary adder as a model for the synthesis.

All techniques are illustrated with examples.

Extensions of subinterval logic to the multi-input transition-

coupled circuit are outlined and recommendations for additional

study are made.



ACKNOWLEDGMENT

The author wishes to express his deepest appreciation

to Professor Harry W. Mergler, Director of the Digital Systems

Laboratory of the Case Engineering Design Center, for suggesting

this challenging problem and for his encouragement and helpful

advice in the development of this paper. The author is also

indebted to the National Aeronautics and Space Administration

for sponsoring the research from which this report evolved.

The -;,,.,,.,.,_',,,_w'l ,, I,,o"i_ ,,,+" llq-i=_ Diane Ross_ who advised the

author in the preparation of the manuscript and typed the pre-

liminary and final drafts, is most gratefully acknowledged.

iii



TABLE OF CONTENTS

Key to Symbols and Notation .........

I. Introduction .............

!!.

III o

Abstract .................. ii

Acknowledgment ............... iii

V

i

c._ _terval Logic ii

Subinterval Analysis of

the Stable Circuit .......... 70

IV. Synthesis of Transition

Coupled Counters ........... 102

V. Conclusions and Recommendations o o o 148

Bibliography ................ 160

iv



KEY TO SYMBOLS AND NOTATION

General S2mbols

A

k ....
a

B

b

C

C

D

d

e

in subinterval analysi_ the underlined

portion of a mixed product of literalso

E.go, ABC in DBABC.

an internal state variable

the km word in a general counting sequence

(without subscript) see b

k_ addend digit for a binary adder, corres-

ponding to an addition of _2 k

an internal state variable

in counter synthesis, an arbitrary constant

corresponding to v for a redundant
combination

an internal state variable

connection matrix for a sequential circuit

reduced connection matrix for a sequential

circuit

see b

an internal state variable

see b

in counter synthesis, the matrix relating

the v coefficients to the w coefficients

see b

at event time kt, a level function of the
last stable state of the circuit

see b; also, a Boolean function
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EI]

i

J

k

Mt

M
m_tx

m

m.

J

N

n

Lo]
Ot

a general pulse signal at event time kt

a Boolean function

the identity matrix

time interval within which a circuit

switches from stable state IQk-l_ to

stable state _k_
k2 J

a running index

a running index

a running index

set of level signals defined at all times

the last event time in a transition

between stable states. The circuit is

stable following this event time.

the number of events (not counting the

event at Ot) comprising the longest

transition between two successive stable

states for a counter.

a running index

the j_ minterm

in recursive transition equations, the

number of subintervals required for a

signal to traverse the longest closed

proper path in the circuit

number of outputs for a sequential circuit.

Also, general expression for the number

of stages in a counter

the zero matrix

event time at which command pulse p is

applied to a circuit at rest and all

circuit action begins
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Ip}
P

[Q]
[Q,]

Q

Q,

q

R

r

r

sQ

S

TQ

set of pulse signals defined at all times

transition command pulse which initiates
all circuit action

internal state vector

next internal state vector

not Q

not QI

a general state variable

the next state of Q

a pulsed variable

a state variable

reset input to memory unit Q

a pulsed variable; also, (as an index)

the number of inputs to a sequential

circuit

in counter synthesis, the number of

redundant states for a particular counter

set input to memory unit Q

number of internal states for a sequential

circuit

set of subintervals over all intervals Ik

whose end points are event times

(i-1)t and (i)t, respectively

trigger input to memory unit Q

transition vector for a sequential circuit

zeroth transition vector for a sequential

circuit
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U

V

V !

V

W

kth transition vector for a sequential
circuit

the kth transition matrix, whose component
columns are different transition vectors

interstage time delay; the length of the

logic subinterval, defined as the longest

interstage delay in a circuit. As a

superscript, denotes reference to one

subinterval ago. The superscript kt

(k an integer) denotes reference to k

subintervals ago.

a pulsed signal

general numerical value _ +_ binary

number encoding of the present internal
state in a counter

general numerical value of the binary

number encoding of the next stable

internal state in a counter

numerical value of the binary number

encoding of the kth word in a count sequence

numerical value of the binary number encod-

ing of the (k+l)_ word in a count sequence

general numerical value of the difference

in the binary number encodings of two

successive stable states of a counter.

Also, a pulsed signal.

column vector of v coefficients

the numerical change in the binary number

encoding of a counter state when switching
from its k_ state to its (k+l)m state

a pulsed signal

column vector of w coefficients
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X

Y

Gzj
Z

in counter synthesis, the coefficient of

the k_ exterm in the weighted exterm

expansion for v

input vector for a sequential circuit

a product term of literals

a product term of literals

output vector for a sequential circuit

a product term of literals

Special S_mBols

aQ

AQ

°

3

Boolean variable denoting the transition

of Q from Q = 0 to Q = 1. Also, the

pulse signal emitted by stage Q in per-

forming this transition obtained by

differentiating the level signal Q.

set of pulse signals produced by 0 - 1

transitions of memory elements

Boolean variable denoting the transition

of Q from Q = i to Q = O. Also, the

pulse signal emitted by stage Q in per-

forming this transition, obtained by

differentiating the level signal Q.

set of pulse signals produced by i - 0

transitions of memory elements

transition of either polarity on the

part of stage Q

general symbol for the time interval pre-

ceding an event time, during which all

pulsed signals arrive at their destinations.

the length of the interval preceding event

time jt during which all pulsed quantities

reach their destinations.
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B

j=A

_-max

connective indicating membership in a set.
Read "is a member of ..... "

the converse of _ . Read "is not a

member of ......."

product of transition matrices _C_
through C kt , with diagonal not

used in multiplication

reduced product of transition matrices

multiple ring sum (exclusive OR) over j

from j = A to j = B inclusive; also,

multiple algebraic sum (PLUS)

the longest level signal rise time in a

sequential circuit

0 or 1 - - a "don't care" Boolean quantity

®

A

+

B

multiple logical union (OR) over j, from

j = A to j = B inclusive

ring sum (exclusive OR) connective

definition connective, read as "is

defined as ..... "

the logic union (OR) connective. In

algebraic synthesis technique, the

addition (PLUS) connective

the concatenation connective of

regular expression algebra

identity connective

X



Logic Symbols

S

t
_Q

R_

_T memory unit
(flip flop)

B
I i __

I
A+B+...+C OR gate

AB
C

_o I oooC AND gate

p Q__pt pulse delay
(I subinterval)

xi



I. INTRODUCTION

The sequential circuit comprises an important part of

any digital computer or automatic control system. In its

engineering form it consists basically of an aggregate of memory

units having combinational circuitry at their inputs and outputs,

as shown in the functional block diagram in Figure 1.1. The

outputs are functions of the inputs and the states of the memory

units. Every time the input configuration changes, it defines a

new set of states for the memory units and a new output

configuration.

In formal terms, the sequential circuit is a structure

characterized by an input vector IX] , an internal state vector

[Q], and an output vector [Z] . Functionally, these entities

are related by equations of the form

Z i = fi ( Xj, Qk) (I.I)

= %( xj,%) (1.2)

O_i_n-i

O<_r-i

O<k,m_s-i

where_ is the next internal state vector.

The structure described above will be recognized as charac-

terizing all arithmetic circuitry and most control circuitry in

-- 1 --
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digital control equipment and is thus a common design problem.

One of the main tasks in its design is to determine the number

of internal states the circuit is to have, for the unit is

generally specified in terms of input-output relations with no

direct reference to the internal state. The classic works in

the field of state identification techniques and reduction

(26)
of a circuit to a "minimal state machine" are by Moore

Mealy (23) (16,17), and Huffman . Among more recent contributors,

Unger and Paun (32) (12,13) (31), Ginsburg , and Unger also

(28)
considered this problem at length. Netherwood in addition

introduced helpful manipulative techniques to aid in the

reduction and considered the reduction of combinational circuitry

for the minimal circuit as well.

If the internal states are not previously specified, or

coded, the designer can choose an internal code to minimize

cost according to some criterion, or provide for optimum

reliability. Excellent treatments of this problem can be

found in papers by Armstrong (1,2) Hartmanis (14), , and Stearns

and Hartmanis (30).

Once the size of the memory unit has been established

and an internal code has been chosen for a sequential circuit,

the design problem focuses on the memory unit itself. A typical

synthesis problem, for example, might be to specify the input
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connective circuitry and memory inputs when the relation between

inputs and internal states is specified. The analysis problem,

on the other hand, might involve the determination of the

behavior of a sequential circuit of known structure in response

to an input not previously used. In either case, the task can

proceed only if a valid mathematical model of the actual memory

unit has been developed. In addition, a convenient logic algebra

should be available to render a clear-cut description of the

operation of the memory unit: The former problem does

not present much difficulty, since the mathematical model can

be built up directly by experimental observation. In contrast,

the more intangible problem of logic formulation is far from

simple. For example, the ordinary Boolean algebraic means

used to describe synchronous counters in the form

fails to give an adequate description of a large class of

asynchronous systems, as will be shown in Chapter II. Over-

coming this particular problem is part of the objective of

this study.

The Counter

This paper will consider the analysis and synthesis of a

particular type of sequential circuit, namely the single input
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circuit, often called an operation counter, or more simply, a

counter. This circuit changes its internal state whenever a

transition command is applied to it, according to a specified

logical relation° While a full description of ,the response

of the system is not given, it is assumed that the counter

eventually reaches its next internal state and remains there

indefinitely unless a new transition command is applied.

Such a state is called a stable state. Any other states

the memory unit assumes temporarily in the process of transition

between two stable states will be called an unstable state.

A considerable body of literature on counter design and

analysis is in existence. However, it is for the most part

restricted to the synchronous case° That is, a stage in the

counter is assumed to go from its present stable state to the

next in a single transition, initiated by the transition command.

Such an implementation is generally costly in terms of

logic circuitry but very reliable, providing timing problems

have been eliminated°

A more sophisticated form of counter is the asynchronous

counter, which can accept an input pulse any time it is in a

state of rest and proceed to its next stable state in a series of

actions determined and timed entirely by the counter's own

circuitry° A particularly useful class of such counters will be
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treated in this study°

This paper will deal with the analysis and synthesis of a

transition-coupled asynchronous counter having as pulse

inputs (a) a transition command pulse p, which initiates the

circuit action and (b) fed-back transition pulses from the

memory units themselves, obtained by differentiation of voltage

levels. Pure delays, as well as the usual combinational

circuitry are, of course, also permitted in the circuit.

A functional dia_am of the above circuit is shown in

Figure 1.2.

Certain restrictions are readily apparent from Figure 1.2.

The principal of these is that only pulse quantities are

permitted as inputs to the memory units° In addition, only

state levels are considered as true outputs° A close examination

of the diagram will also disclose a third stipulation: Since

any transition in the memory unit can produce new pulse inputs,

hence new states (and possibly additional transitions and pulses),

it is clear that a number of unstable states may be assumed by

the memory unit before it finally settles in a stable state.

Therefore, it must be stipulated that the brief appearance of

unstable states will not impair the operation of whatever is

connected to the circuit. This is most often the case in sampled-

data and quantized-data systems where the counter would be read
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only at discrete times not coincident with transitions.

To sum up the operation of a circuit based on the present

mathematical model, the sequence of events in a typical "count" is:

I. The command pulse p is applied to the input line.

2. Entering the input combinational circuitry,

the command pulse forms pulse inputs for the

memory units. These inputs are in no way

intentionally synchronized. Their times of

application are determined by the natural

delays within the input circuitry.

3. The individual memory units respond to their

inputs by switching where applicable. In

switching, they emit _or _ (O - 1 or 1 - O,

respectively) transition pulses.

4. The _ or _ pulses are fed back to the input

combinational circuitry, possibly providing

new pulse inputs for the memory units.

5. The process described in steps 3 and 4

continues until all feedback pulses cease

and the circuit comes to rest. This defines

the new stable state.

If a circuit fails to reach a stable state during any transi-

tion, it is inherently unstable. The analysis and design of such
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circuits will not be considered in this study.

Considering the great complexity of the behavior of an

asynchronous circuit as compared to that of an equivalent

synchronous circuit, it becomes readily apparent that a concise

logic applicable to the asynchronous circuit is seriously needed.

Such a logic should be capable of describing any action, however

peculiar, that an asynchronous circuit can take. Further, it

should be mathematically sound and consistent. Finally, it

should be reasonably simple +o. ____.__.-_.I_+ând should, of course,

be capable of describing a synchronous circuit since the latter

is merely a special case of the asynchronous circuit. Part of

the objective of this paper is to develop such a logic.

Supplementing rather than replacing the techniques presently

used for synchronous analysis, the so-called subinterval logic

permits known analysis techniques to be extended to include

asynchronous sequential circuits having feedback pulse coupling.

A mathematical model for the type of memory unit to be

considered in this paper will be described, along with the

development of subinterval logic, in Chapter II. This chapter

will also develop a technique for setting up circuit equations

in subinterval logic and will show how the stability of a

circuit is determined from these equations.

Chapter III discusses the analysis of a circuit once its
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stability has been established. A rapid and compact method

for performing the analysis is developed.

In Chapter IV the problem of synthesizing transition-

coupled asynchronous circuits is considered. The techniques

proposed are standard algebraic as well as lo_cal.

Conclusions and recommendations for extensions and further

investigation are presented in Chapter V.



II. SUBINTERVAL LOGIC

For purposes of mathematical representation, sequential

circuits, whether synchronous or not, have for the most

part been treated as synchronous, mainly because a well-

developed mathematical procedure was available for this purpose.

In considering internal states, the essence of this procedure

was simply to express the next state variables of a circuit

as Boolean functions of the input variables and the present states

% = (xi, (2.1 
A further transformation was effected by applying the

equations of state of the particular memory units in the

circuit to the above equations. The result was a set of equations

relating the general inputs for the memory units to the

present states of the memories and any external variables.

For pulse-input synchronous machines an implicitly assumed input

is a clock pulse p without which the circuit could not operate.

The limited applicability of the preceding approach to the

asynchronous switching circuit is readily apparent. First of

all, it assumes that all logical operations prescribed for the

circuit will be performed in a single step, keyed by the clock

pulse; and secondly, it takes no cognizance of pulses and level

changes as contrasted to level states. Thus, once the basic

- ll -
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character of a switching circuit was determined by analyzing it

as a synchronous circuit, further simplification by design in

terms of asynchronous logic had to be effected intuitively by

the engineer. Needless to say, the ultimate simplicity of the

final design was in a great measure dependent on the ingenuity

of the individual engineer.

(24)
The use of differentiation logic, described by Mergler

(21)
and Marcus helps place asynchronous analysis on a formal

mathematical basis. P-ther than studying the asynchronous cir-

cuit by considering its synchronous counterpart, differentiation

logic introduces a new set of Boolean variables, I_i, _il ,

(notation after Mergler_ representing pulsed quantities derived,

respectively, from 0-i and i-0 transitions within the logical

circuit. By logically considering transitions rather than

final states, one can thus synthesize a large variety of

sequential circuits directly, using leading-or trailing-edge

logic, the inputs to all memory units being expressed in terms

of existing states and transition pulses.

Before considering an example of synthesis using differentia-

tion logic, it will be convenient to formulate a mathematical

model for the type of memory unit to be used in this study°

This unit is the pulse-input RST flip flop shown in Figure 2.1.
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Figure 2. I
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The unit has two level outpus, Q and _, one of which must

be i and the other 0 in this simplest of models° In addition,

there are two pulse outputs: _, emitted when the unit switches

from 0 to the 1 state (i.eo from Q = O to Q = i); and _Q,

emitted when the unit switches from the 1 to the 0 state° The

inputs R, S, and T are pulsed quantities assumed to be

mutually disjoint at any given time. The relation among these

quantities is:

CIQ : (T + S) Q (2.2)

_Q = (T + R) Q (2.3)

Q' - s+_+_Q (2._)

_, - _ + TQ + _ (2.5)

Also since R, S, and T are disjoint and the Change in Q

is AQ = _ + _Q = _Q_ _Q (since

and 2.5 may be written as

Q, =Q_AQ-_Q®

C_Q _Q = O), equations 2°4

- T®RQ®_ (2°7)

To demonstrate a case in which this logic proves very helpful,

consider the design of a forward binary counter having stages

A, B, C, and D corresponding to weights 8, 4, 2, and 1 respectively.

By considering transitions of each stage in the process of counting,
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one obtains

% =

_D = Dp

a c =

=

uB = _CDp

a A =

This may be rewritten as

(2,8)

% =

=

GC = _'_D

_c-- cp_
aB = B_C (2°9)

'_A= _'_

It is readily apparent that the simplest design for the

counter is a set of T flip flops whose logic is given by
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TD = p

TC = FD

TB = _C

TA = _B

(2.1o)

A hidden assumption in the familiar design shown above is

that stage D switches first, thereby producing the switching

signal for stage C, which in turn provides the switching pulse

for stage B, etc. In short, interstage delays are assumed

+_....._.,+ _ v__ the algebra takes no account of..... _...... e circuit. _,

these delays. Thus, it is only through sheer luck that this

particular circuit functions as expected. As will be presently

seen, the above method fails where additional delayed pulses

from feedback paths appear at the flip flop inputs.

The Basic shortcoming of ordinary differentiation logic

is that it is formulated entirely on the assumption that during

a single count, a particular memory unit goes from its initial

state to its final state in one single transition, so that the

actual operation of any memory unit can be determined fully

By merely examining the final state and the initial state.

In short, ordinary differentiation logic assumes that no more

than one pulse, delayed or otherwise, is applied to a stage

during any single count. Such is indeed the case for the ordinary

Binary counter. A general circuit with this characteristic is
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called a normal fundamental mode circuit (ii).

Man_ types of logical circuits, however, use feedback

loops which are intended to provide certain stages with a

series of input pulses. The stage in question thus assumes

its final state by a series of switchings, emitting perhaps

a number of important transition pulses in the process.

Differentiation logic, in its original form, is incapable of

furnishing a valid mathematical picture of this process.

For example, consider the 2421 counter shown in Fisure 2°29

Applying differentiation logic directly yields

TD = p

TA = _B

(2.11)

Note now that TC = i whenever D switches from i to O. The

same is true of TB whenever C switches from 1 to Oo This

would seem to indicate that C amd B will switch in such a case

regardless of whether or not A ultimately switches from 0 to 1.

Yet this is not a valid description of what happens in the

actual circuit° A transition from Olll to lO00 turns out to

be temporary, as feedback from A sets stages Band C back to 1.

Thus in a single count, stages B and C first switched from 1 to O,

emitting very necessary _ pulses in the process, and then returned
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to their original states of Io The effective TB and T C are

thus 0 in terms of initial and final states and yet equal 1

as far as the emission of pulses is concerned. In short,

ordinary differentiation logic fails when feedback loops are

present in the logic because it contains no provision for the

consideration of two or more input pulses appearing in a

sequence, the results combining between two successive stable

states.

The LoEic Subinterval

Reflecting on the nature of ordinary differentiation

logic, it ms,7 Be said that its conceptual effect is to convert

an asynchronous switching circuit to an equivalent synchronous

unit by introducing new variables based on transitions of

various outputs from one state to another. Its main shortcoming

is that its basic synchronization interval is the fundamental

clock interval itself; namely, only one transition between

successive stable states on the part of any stage of a sequential

circuit is permitted by the mathematics.

Once this handicap of ordinary differentiation logic is

realized, an adaptation suggests itself readily° The interval

between successive stable states is simply divided into a suitable

set of subintervals. The precise length and number of these

subintervals is not critical, but the number must be sufficient
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to span the entire transition while the length must be sufficiently

small to account for every significant event during the transition.

A significant event here is intended to meanany event based on a

delay and/or producing a delay without which the circuit could not

operate° For example, in the case of the standard binary counter

previously described, the significant events are the switchings

of the individual memory units° Throughout this paper, only

interstage delays associated with memory unit response time

will be considered as significant° Delays encountered in gating

will be considered as of a smaller order of magnitude and will

not be depended on as design parameters° Furthermore, all

interstage delays will be assumed to be approximately the same.

For purposes of the present discussion, divide the clock

interval into a set of subintervals of length t, where t is

the longest of the almost equal interstage delays in the circuit°

The sequence of events when a transition command p is applied

is shown in the timing diagram in Figure 2°3.

Now choose some time kt as a reference° The circuit is

just responding to the k_ interstage delay and the inputs to the

various flip flops are pulses originating at previous times,

and now arriving due to delays° At this point, it will be

convenient to introduce a notation to describe these delayed

quantities. Let the superscript "t" indicate a delay of t,
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t
"2t" a delay of 2t, etco Thus, if q is a pulsed quantity, q

indicates that the pulse q originated one subinterval ago and

is now arriving due to interstage delay° To cite a familiar

entity, _tQ indicates Q was 0 one subinterval ago and is now i.

Hence, it had to switch one subinterval ago and an equivalent

t

expression is thus GQ .

At this point, a few basic postulates for subinterval

logic must be stated° They are as follows:

1. Stability postulate: For every pair of

successive states of a stable counter,

(_k-1] , EQkl), there exists a finite time

interval Ik within which the transition from

_-I_ to _Qk_ takes placeo

2o Every transition from state _k-1] to _kJ

takes place in a finite set of significant

events that are approximately equally spaced

in time.

3. Within every interval Ik, there exists a set

of discrete event times, Ot, t, 2t, etc.,

such that all significant events can be

observed within small increments _k preceding

these times, where _k<< to
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4. There exists a set of subintervals s. over
1

all intervals Ik whose end points are event

times (i-1)t and (i)t, respectively°

5- There exists a set of event times {Ot} over

all Ik which mark the lower boundaries of the

Ik .
exist sets _t) , {2t) , etc.

There also

which mark the occurrences of significant

events on all Ik.

o. On every there exists a set L of level

signals defined at all event times.

7. On every _, there exists a set IPl of pulse

signals defined at all event times.

8. For every Ik, there exists a command pulse

P E {P_ which marks event time Oto

9. There exist subsets{(li_ and _._ of {P_

produced by 0 - 1 and 1 - 0 transitions,

respectively, of memory element _.

lO. Only pulsed quantities produce transitions in

memory units and no level quantities are applied

at their inputs.

every event time, there exists a set {P mt}_IP _ll. At

of pulses originating m subintervals ago and

now arriving due to delays°
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12o At every event time, there exists a set _LmtI_L I

of levels which were defined m subintervals ago.

13. Causality postulate: All circuit action starts

with the command pulse po Before p, the circuit

is at rest in a stable state°

For the following postulates, assume lower case quantities

members of _P_ while capitalized quantities are members of _L_.are
L J

15o Asymchromism postulate:

16. (qt)(At) = (qA)t_{P_

17. (At)(B t) = (AB)t_L_

Certain important theorems arise from these postulates.

Theorem l: pmtpnt = O for m # n.

Proof: By the Causality Postulate (13) all circuit action

started at a unique instant defined by the external application

of p o At any event time, pmt and pnt refer to two different

mt nt
times, a contradiction of this postulate. Hence, p p = O

mt nt
for all m # n. Although expressions containing forms p p

will not appear as such in logical equations, this Theorem is

important in establishing basic disjointness in such expressions

as Amt mt Bnt ntp + p .
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Theorem 2: pmtAnt mtAmt= p for n_m°

Proof: This again arises from the Causality Postulate.

Since no action takes place before time Ot, the value of the

level quantity A prior to Ot is its stable value still

defined at Or.

The next theorem is perhaps the most important theorem

in subinterval logic. Before considering it, the following

lemma must be established°

Lena- At an event time kt, any signal fk _ _P_ can

be expressed in the form F_ kt, where Fk _ _L_is a function

of the state of the circuit at Oto

Proof: Referring again to the Causality Postulate, any

pulsed quantity had to originate with p, k subintervals ago°

Hence, the presence of pkt in fk" Now since no other pulse

could have originated at Ot and if it had, its use with p

could violate the asynchronism postulate, F k must be a

level quantity° On the other hand, any level quantity defined

at Ot is of necessity a function of the stable state at this

time. This proves the lemmao

The signal superposition theorem can be proved with the

help of this lemmao

Theorem 3: On a line in a stable counter carrying pulsed

signals, any total signal f _Plcan be resolved into a unique
tJ
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union of disjoint pulsed quantities in the form

f = _(Fj) pjt

J

where Fj_---_L_ are functions of the preceding stable state°

Proof: Consider the signal on the line at any particular

event time kt. By the Lemma just proved, the signal is of

pjtthe form _k_t, indicating t= lo But then, = O for

all j # k, since pjtpkt = O, (see Theorem l) and any terms

containing pjt j _ k, contribute nothing to the expression

kt
for the signal. Similarly, p = 0 at any other event time

jt, where another unique term Fjp jt will describe the signal.

a result, all terms FkpKt-- are disjoint and mayAs be written

as a logical union.

To prove uniqueness, assume some expression_ (F'j)p jt

J
which also describes the total signal but F'. is not necessarily

J

equal to F.. Then, one can take

U (F'J)pjt =U (FJ)pJt

j J

(2.13)

U (Fj _ F'j)p jt = 0 (2.14)

J

Now since the quantities pJtare mutually disjoint, it

follows that
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(Fj _ F' ) pjt = 0 for all jj

But by definition pjt = 1 at each event time jt. Hence

F _ F' must vanish at each event time jt, which meansJ J

that F. = F'. for all jt. This, in turn is simply another
J

way of stating that the two different expressions are the

same after all, proving uniqueness.

The preceding theorems provide a solid basis for the

analysis of an asynchronous counter. In particular, they

indicate that given am_ stable counter, the signal on any

pulsed line can for any event time be traced back to its

unique source, the transition command p o Furthermore, since

this command is applied only once, the expression for the

signal for a given time is disjoint from the expression for a

different time. Therefore, a general expression for the total

signal on a line -- applicable to any event time -- can be

given in closed form. Finally, this closed form can be

composed entirely of terms referring, (in addition to p, of

course) only to the stable state defined at event time Ot.

The mathematical model for subinterval analysis is based

on equations 2.2 - 2°7, originally formulated for ordinary

differentiation logic, although the expressions for Q' and Q'

are generally back-dated one subinterval, giving Q and

as functions of past internal states and inputs:
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Q = st + Tt_t + _t_tQt = Tt (_ _tQt _)8t_t

(2.15)

= Rt + TtQt + gt_t_t = Tt (_ RtQt _ _t_t

(2.16)

As may be seen, the basic mathematical model is the

same as that adopted for synchronous differentiation logic.

Indeed, synchronous differentiation logic is simply subinterval

logic describing a circuit in which all action takes place

in a single significant event. The principal difference

between the two logics is that in subinterval logic, quantities

R t ,such as Qt etc., refer to the values of R, Q, etc., one

subinterval ago rather than necessarily at time or.

In the basic mathematical model for subinterval analysis,

a transition pulse _ or _Q is assumed to be emitted

immediately upon application of a pulse causing the transition.

However, an inherent delay of t is assumed to be associated

with this transition pulse, so that it cannot be used as a

logical entity until one subinterval later° A gate, on the

other hand, is assumed to pass a pulse with a negligible delay

compared to t. Also, the state of a memory unit at an event

time is assumed to be the state immediately preceding it,

whether a transition takes place or not. Thus, an essentially

undelayed pulse Q from a memory unit that is triggered, say,
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can be obtained only by AND-gating the trigger pulse with the

Q side of the output, while a delayed Q pulse can be obtained

simply by d/fferentiating the level output on the Q side (in

other words, taking a Q pulse from the unit). This is

The logic describing the outputs isdemonstrated in Figure 2.4.

u = pQ (2.17)

= ptQt (2.18)

that vut_ -- P _ that is, if u were intention-_ote, however

ally delayed by t, it would nevertheless not be expected to

be synchronized with the inherently delayed pulse v.)

A more involved example for analysis is shown in Figure 2.5.

The logic for the signals u, v, and w is:

v = _ = utQ t (2.19)

u = p + w (2.20)

t _tvtw = = (2.21)

By simple manipulation among these equations each signal

can be expressed in terms of p and its own past values:

v = Qtpt + Qt_2tv2t (2.19a)

u = p + RtQ2tu2t (2.20a)

w = _tQ2tp2t + RtQ2tw2t (2.21a)
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p

U

V

Figure 2.4

Figure 2. 5
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If the circuit diagram in Figure 2.5 is now examined, it

will be readily seen that these equations can be obtained

directly by tracing every pulse signal to its sources, that is,

either to p or to its own past around the loop. The procedure

is analogous to that of tracing currents or voltages in AC

circuit analysis.

Since equations (2.19a-2.21a) are recursive, they may be

iterated repeatedly, resulting in an infinite series of terms

kt
containing p , a description of a seemingly unstable circuit.

In actuality, the terms vanish after a certain point as may

be found by putting the expressions in the form of equation 2.12,

the uniqueness and existence of which is proved in Theorem 3:

f = -_-_J(Fj) pit (2o12)

J

As will be shown later, equations (2.19a-2.21a) reduce to

v = Qtpt (2.19b)

u = p + _2tQ2tp2t (2.20b)

w = Q2t_2tp2t (2.21b)

indicating the circuit comes to rest in a stable state in a

maximum of three events.

To demonstrate further the direct method of subinterval

analysis, consider again the 2421 counter shown in Figure 2.2.

For a preliminary setup, each memory transition -- for this
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case identified by a trigger signal -- is traced to its

sources, with a delay assumed at each flip flop output.

basic setup is:

TD = p

TB = + (]_A

'A:
In this form, all signals were traced only to their

nearest sources. Substituting = D T_ ,

eventually yields the set of recursive equations

The

(2.22)

tt= C TC , etc.,

TD = p

= t
T C ptDt + C_A

TB = p2tD2tct + _tB2_t + ct_2t_t_Bt

= _tv2t_2t
TA p3t_tc2tBt+ BtC2tA3t_At + _ a wA

(2.23)

This set of equations is of a form particularly suitable

for circuit stability analysis, which will be discussed shortly.

As may be seen, each transition signal (i.e., trigger signal,

for this example) with the exception ofT C, is traced to the

command signal p or to its own past through loops. In the

case of TC, no finite equation of this form was possible.
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Only a cursory examination suffices to ascertain that,

where possible, each equation in (2.23) constitutes the shortest

description of every route through the circuit from a signal

to its own past or to p. Each product term represents one such

route without repetition and without containing any other

path represented by a companion term. Such a route may be

called a proper path after Hahn, Aufenkamp, and Seshu (15),

who used this concept for the determination of non-redundant

paths through a weighted directed graph (eog., a state diagram).

An adaptation of a matrix method used by Hohn, et al will

now be developed which will give directly a set of equations

such as (2.23). It might be noted that an equivalent method

of describing a circuit in the form of (2.23) exists in the

regular expression alEebra of Kleene (19). This algebra is

capable of handling sequences containing loops by means of the

concatenation connective "," , giving very compact expressions

for such sequences (see also Ref. 7). In a recent study,

Brzozowski and McCluskey (8) described the use of signal flow

graphs to obtain and reduce regular expressions. For purposes

of this study, however, the notation and techniques of regular

expression algebra are considered less convenient to use than

the matrix methods about to be described and will therefore

not be employed.
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Returning to equation set (2.22), recall that it is

tt
pe_issible to substitute D TD

t
for D, ctTt for C , etc.,

and simply p for TD. Then, (2.22) can be expressed directly

in matrix form:

P

Tq

T1

T

A/

f0

Dt

0

0

O 0

O 0

Ct 0

O Bt

_t

t'

_t

_t
_B

_t

"A/

(2.24)

or

IT] = [C] t IT] t (2.25)

where the multiplication of the matrices is defined by

U t tT.1 = (2.26)
k

connection matrix [C] t is a map of every path ofThe

length t between past signals and present signals. If the

recursive equation 2.25 is iterated once, the result is

T - [C] t [C_ 2t IT] 2t (2.27)

matrix[C]_C_ t is, by the same token, a map ofThe

every path of length 2t among the signals:
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0 0 0 0

0 0 _tB2t 0

C_ 2t 0 AtB2t ct_ 2t

0 Bt_ t 0 BtA 2t

(2.28)

The appearance here of the main-diagonal terms AtB2t and

BtA 2t indicates the presence of the closed loop between

stages A and B. The non-diagonal terms in each row are

possible "feeder" signals for the loop, originating outside

the loop. The reduction technique in this matrix method

consists of the progressive elimination of:

1. Feeder terms containing closed loops of any length

2. Major diagonal terms containing loops specified

elsewhere

3. Feeder terms that are expressed in more expanded form

elsewhere.

The method also detects the condition where signals

cannot be traced to p and their own past values only, in a

finite form.

To demonstrate the reduction procedure, consider the

matrix [C] t [C] 2t _ _I_ 2t.

To begin with, cross out all terms identical to diagonal

terms in their own columns. This gets rid of feeder terms

containing closed loops, which cannot be reduced further.
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For example, in equation (2.28), cross out the term AtB2t in

row 2, lying directly above the identical diagonal term

of row 3o This is sufficient to indicate that TC cannot be

expressed in terms of p and TC only, without a detailed

stability analysis.

Further reduction can now be undertaken. Since part of a

path of length 2t is a path of length t, matrix (2.29) must

contain as terminal paths all paths of length t, listed in LC] t

except those originating one subinterval aEo , which are thus

row of

not parts of paths of greater length° The simplification

can thus proceed by examining LCI t and _2t in each row

_-_LcJt crossing out all terms contained fully in the sameof

_C] 2t° For example, comparing rows3 of [C] t and

for the 2421 counter,

(0 Ct 0 _t) --- (CtD 2t 0 AtB2t CtA 2t)

it can be seen that both C t and _t are contained fully in

the third row of _2t and may therefore be crossed out in

EC_ o Comparing rows 2, on the other hand,

(D t 0 0 _t) --_ (0 0_0)

indicates that neither _t nor D t can be crossed out in row 2

of [C_ • The reduced matrix LC] t is simply,



- 37 -

\
0 0 0 01

D t 0 0 Q

0 0 0 0

0 0 0 0

(2.29)

The reason for encircling _t will be explained shortly.

Next, examine matrix HC 2t. Since no loop is to be

repeated in the simplification, encircle all terms on the

major diago--__& o_d do not use them in further multiplication.

Io o o oIo o o ol
o o_o o|¢t o o

_ 2t [c]3t=

CtD 2t O_C_ I- 0_t 0

( Do not use in further multiplication)

0 0 0 0 /

0

0

Bt_t_ t

0 0 0

o@o
o o@

(2.3o)

This matrix can be used to simplify

way as _]2t was used to simplify rC1 t .
%- %_J t- J

_C] 2t , in the same

The new reduced matrix

is



0 0 0
0 0

= 2t
0

0

(2.3i)

The nondiagonal terms of this matrix are only terms

originating exactly 2 subintervals ago while the diagonal

terms describe a cycle of length 2to

The reduction process contimues by iteration so long

as nonzero matrices result in the process. At each iteration,

the following reduction method is used:

I. In the matrix _kt = [iic](k-l)t ic_t encircle

all diagonal terms. They are not to be used in

.

further iteration multiplications.

_kt if any feeder (non-diagonal) termIn

contains a loop term (diagonal term from a given

column) -- back-dated or not -- from any matrix

_cl jt l_j_k, cross out that term and encircle

_C] (k-1)t which generated it. Thisthe term in

term should no___thave been used in multiplication

during the last iteration, so now cross out all

other terms in _C] kt that it had generated. (In

practice, these are easily located in the same row
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as that in which the offending term is located.

3. In _C_ (k-l)t cross out all terms which are accounted

for at greater length in the corresponding rows

The matrix that remains is defined as the reduced matrix

_.l (k-l)t. Its encircled diagonals identify loops while the
L_J r

other encircled terms identify paths definitely within loops

or connected to loops. The terms that are not encircled

originate either from p or from larger or sore distant loops

than the path length can trace.

On the basis of the rules just stated, the analysis of

the 2421 c_unter can be concluded.

Matrix (2.30) is the highest-order significant matrix

for this circuit. Any additional iteration produces a zero

matrix. The result of the analysis then can be summarized as

follows:

N

kVT.]k t

k=l

(2.32)

For the 2421 counter, this is identical to the equation

set (2.23).

[ {
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To illustrate the method just described with another

example, consider the circuit in Figure 2.6.

The matrix equation for the circuit is

p 0 0 0

D t
T C = 0 _t

TB Ct O

T _t B t

/'U
o/\_[/

(2.33)

The first iteration gives

t 0 0 0 h

_tD2t Btc2t _t_2t _/

Note the crossed out terms in this matrix. _tA2t_t in

row 2, column 3, contains the loop term AtB 2t for that column,

back-dated one subinterval, so it is crossed out and the

generating term BtA2t in _C_ 2t is encircled (see matrix 2.37).

The second iteration yields

/o o o o1_I_2tcC_ 3t =I t 2: t_ 0
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!
_D

°_
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Since this term also generated the diagonal term BtA2t_t,

the latter has been crossed out as well. The same procedure

has Been applied to the terms of row 4.

A further iteration produces a zero matrix. The reduced

matrices for the complete circuit are therefore:

o ot 0 0

\: o o 110 0

_-C] 2t= D2t

D2t

/

O
o o

_IJ3rt = - tl)3t 0

0 0

(2.37)

(2.38)

The corresponding equations for the circuit are:
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TD = p (specified at the outset by inspection) (2.39a)

=t_2t_2t =t.2t_2t
TC Dtpt + z u TC += _ A TA (2.39b)

= .t_2t,_2t
TB CtD2tp 2t + Atc2t_tp 3t + (ct_ 2t + A _ jwB

+ At_t_t_Bt (2.39c)

= _t_2t_2t =t=2t_2t t.2t_2t
TA CtD2tp2t + _ u w C + u _ w B + B A WA

(2.39d)

As may be seen, the method just outlined provides a rela-

tively straight-forward technique for setting up subinterval

logic equations, given a circuit diagram or a connection matrix

C] t The chief advantage is accuracy and the fact that,

where possible, the final form is the purely recursive form

of equation (2.39c). Where such form is not possible, the

fact also becomes readily apparent and the shortest alternate

form appears automatically in the result.

The circuits used for examples happened to be composed

of T flip flops onlyo When R S T flip flops are present, the

symbol AQ = _ + _Q is substituted for TQ. The setup

method remains the same, but care must be taken, of course,

to include in the connection matrix the paths associated with

S and R inputs as well as the T inputs. This is discussed at

length in Chapter III.

It should also be noted that in both circuits just analyzed,
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p was a direct input to one of the stages and the simple

substitution TD = p was made by inspection. Where p is applied

through combinational circuitry (which is considered a

"path of length zero") such a substitution is no longer possible.

Then, the transition vector of the circuit must be expressed

in its general form

E<I-- ÷Lc?t"7
Here [To] p is the immediate response of the circuit at Ot,

namely the response to p by stages connected to p directly or

while[C_ ET] t is the response of the circuitthrough gating only_

to its own transition signals generated one subinterval ago.

By iteration, equation (2.40) can be expressed in terms of the

circuit's matrix products.
N-I

where

k=O k=l (2.41)

_C] Ot is defined as [Z], the identity matrix.

For example, the action of the circuit in Figure 2.5

would be described by

= P + t _t/

Expressed in the form of equation (2o41), this is

(2._,2)
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tlwhere for this special case r = 0 .

In simultaneous equation form, (2°43) becomes

(2°43)

TQ = u = p + RtQ2tu2t (2.44)

TR = v = Qtpt + Qt_2tv2t (2.45)

which is identical to equation (2.19a) and (2o2Oa)o The

quantity w = Rtvt is not necessary for the specification of

the system.

Circuit Stabilit_

As was previously mentioned, it may be possible for a

circuit to assume a mode of operation from which it is unable

to come to rest. If this is the case, the circuit is inherently

unstable° Since transition-coupled circuits are particularly

susceptible to instability, they must generally be carefully

examined to assure stability. Subinterval logic is a useful

tool for this purpose.



- 46 -

In the preceding section, it was shown that transitions

in the internal state of a circuit can be described in subinterval

logic by a finite vector equation of the general form

N-1 N

T = U _c_kt _o_ktpkt + U _C_kt_T_t

k=O k=l (2.46)

This is similar in form to the set of nonlinear difference

equations

n-i

j=- _ k=l (2.47)

where gm(nT) is an externally applied forcing function analogous

to p in (2°46). Indeed, equation (2.32) has many of the

properties of (2o47), most significantly a solution composed

of a particular solution and a complementar_ solution. In the

case of a counter, the particular solution is the behavior

of the circuit in response to the transition command signal p,

applied at Ot while the circuit is in a state of rest. The

complementary solution is the behavior of the circuit with only

transition signals as inputs. Such behavior can be initiated

by one or more spurious transition signals, generated when

the circuit is first turned on or introduced at any time by

stray coupling° If either of these solutions is unstable, the
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circuit is considered unstable. Interestingly enough, since

the particular forcing function for a counter is a command

pulse applied at Ot only, any configuration of signals resulting

from it at a later time could equally well have been caused

by spurious pulses in the past. Indeed, a spurious pulse

could be applied at the input line itself and thus duplicate

the action of po For this reason, the stability of the

circuit is established once the stability of the complementary

solution is ascertained. This is the reasoning used in the

stability tests using subinterval logic.

A circuit or any portion of a circuit can exhibit unstable

behavior only if

a. It has one or more unstable feeders, or

b° It contains one or more unstable loops, or

c. Both of the above.

Now the setup technique described in the preceding section

provides a clear picture of the loops and feeder signals in a

circuit° Thus, to check stability, it is sufficient to

"break into" all loops and examine the signals within them --

both feeders and loop signals. If any of these can recur

indefinitely in a loop, the loop is unstable. If not, it is

stable. In all cases, the stability test seeks instabilit_
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rather than stability, because this approach is simpler in

Boolean algebra° The ascertainment of stability lies in

the failure to establish instability. The procedure is as

follows

To begin with, set up the equations for the circuit,

neglecting feeder terms containing p explicitly° If the matrix

method is used for the setup, omit columns and rows corres-

ponding to p_ if any° For example, the appropriate matrix

for the 2421 counter is

[c]t = t 0 (2°48)

B t

The justification for disregarding p is that if the

circuit is unstable, it will be possible to choose for analysis

an event time sufficiently distant from Ot to eliminate all

terms of the explicit form Fkpkt and still be able to observe

the instability°

Iteration of matrix (2°48) results in loop equations for

signals in the circuit. For stability analysis, it is not

necessary to examine all the signals in a circuit° Rather, it

suffices to examine a set of signals such that every loop in

the circuit is "broken into"°
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A simple way of choosing a set of signals for stability

analysis is merely to examine the reduced matrices of the

circuit (with rows and columns for p omitted) and find a set

of literals which, when replaced by O, will eliminate all

the circled terms° For example, replacing A by O in the matrices

(2o29-2o31) for the 2421 counter eliminates all the circled

terms° Hence, if TA is stable, the entire circuit is stable°

A wider choice of signals for stability analysis can in

some cases be found by iteration of the connection matrix

without crossing out terms containin_ loops, described in

simplification rule 2 on page 38 and continuing until all

distinguishable loops are accounted for° Then, the literals

are again sought such that all circled terms are eliminated

when these literals are replaced by zero. For example, in

the 2421 counter, this procedure yields

' :go3Modified _C_r
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0 0

Examining these matrices_ it is clear that not only

but also B is a literal whose vanishing eliminates all circled

terms° Therefore, if either stages A or B are stable, the

entire circuit is stable°

For R _n1_ _vD_._1 _ _^_ _ _- _- .... -'_ -

(2036-2038) on page 42 for the circuit in Figure 2o6o By

inspection, it can be seen that setting B and B to 0 all

circled terms can be eliminated° Hence9 the stability of

the circuit is determined by the stability of stage Bo

Note that replacing both B and B by O is only a notational

shortcut in this matrix context _o the statement TB = O o

It is not an attempt to circumvent the basic postulates of

Boolean Algebra°

Little can be said regarding an "optimum" choice of

signals for stability analysis except that as many as possible

should be expressible in the purely recursive form (ioeo they

should not contain feeder terms from other loops) while the

remainder should have all their feeder terms referred to these

purely recursive signals o In this way_ once the purely
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recursive signals are proved stable, all feeder terms arising

from them can be disregarded when the remaining signals are

analyzed o

For an illustration of stability analysis, the stability

of the 2421 counter will be determined by examining the signal

TB. The recursive equation for TB , from equation (2°23) is

2tD2tctwritten here with the feeder term p neglected,

TB = _tB2tTBt + ct_2t_t_Bt (2.52)

This is now rewritten as

+ = t _t 2t_B _B _A + _t OCA _3Bt

(2.53)

Note, however, that the quantities on the right could not be

actually implemented in the form shown since this would violate

the asynchronism postulate. They are, rather, a symbolic

description of the chains of events that can produce a transition

in Band can be used this way only on paper.

Superficially, there appears to be a considerable degree

of freedom in equation (2.53) and the existence of a self-

perpetuating logic relationship seems almost certain. In

actuality, there are many restrictions imposed on _B and _B
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and the possibilities soon reduce to only a few° The restrict-

ions are:

ao

For any stage, C_ and _ can never occur simultane-

ously:

Q = 0 for all Q and k.

bo

No stage can have two CX events or two _ events

in succession:

Ikt--(k+l)t _t _(k+l)tQ QIQ = = 0 for all Q and k o

Co Every pair of successive _ events must be separ-

ated by an odd number of _ events:

_QQkt_ (k+r)_(k+l)t @ .... oo o_k+r-l)_ = O

do Every pair of successive _ events must be separ-

ated by an odd number of _ events:

_t_k+r)_k+l)t_ ...... _(Qk+r'l)_ = 0

Rules b, c, and d, of course, are simply a way of saying

that the mutually disjoint _ and _ events must alternate for

a stage, although a pair of events can be separated by any

number of "zero events".

The above are only basic restrictions, applicable in all
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cases° In addition, other restrictions generally appear for

a particular case in the form of requirements for the main-

tenance of an unstable loopo If these requirements cannot

be met, the circuit will be stable°

Returning to equation (2o53), imagine now that an unstable

cycle is in progress, having begun an arbitrarily long time

ago and destined to continue indefinitely. Picture a "slice"

of time that _n_lu_= +ho past three .... _ times --_ -_

the possible combinations of events that could have taken

place during this time° This will determine not only the

event about to take place but also the event that follows°

The results will, in turn, determine two new consecutive

"slices" of time, and so forth° The important question is:

Can any combination of events in the present "slice" produce

an endless chain of events?

Table 2ol shows the "slice" preceding an arbitrary event

time kt, plus a fairly extensive region of neighboring event

times. As may be seen, only four combinations of _'s in the

slice are permissible from the outset° These are shown as

uncircled quantities° The circled quantities are required

to be those shown by the basic restrictions previously dis-

cussed and each is accompanied by a letter identifying the
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appropriate restrictions on page 52.

Table 2.2 takes up from Table 2.1 and the new circled

quantities result from an application of the equation for

_B + _B to the quantities already shown. In particular,

it is an application of the relation that C(B = _B = 0 at

event time if _B was equal to zero both two and threeany

subintervals before° One immediate new result is that three

consecutive event times with _ = 0 constitute a stable

circuit action° Therefore, the row corresponding to this

sequence may be omitted from the list of sequences producing

possible instabilities°

Table 2.3 shows the effect of applying the above new

restriction to the results already obtained and, of course,

reapplying the basic rules where applicable. Notice that

lines I and 3 now reveal the same fully determined cycle,

one line differing from the other in phase onlyo This means

that the event sequence (_- _)-_(_- g )-_-_ always

identifies the cycle of lines I and 3o Now notice that both

lines 2 and 4 end with (_ - _ )-4_(_ - @) in the table°
|

If the next event in either line is _ , then the result will

be the same sequence as in lines I and 3o Therefore, for a

different cycle, the next event must be _ , which changes
!
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to _ because of basic rule Co Finally, in order to keep from

entering the cycle of lines I and 3, the basic cycle (_ - _ )-_

(_ - _) must keep repeating indefinitely.

To sum up the results of this study, only two distinguish-

able cycles could possibly be exhibited in the case of instability

_-(_- _ _--_( p- _ _?.
At this point, it is not difficult to determine that

neither of these cycles can perpetuate itself° The first

cycle can be described by the equations

= t

(2.54)

Now choose some point where _B = i

Applying the recursion formula (2°53) to this equation

gives

for reference. Then

(2.55)

2t _4t _5At _6t_t _A = 1 (2o56)
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Then •

2t 5At_A - _ -- 1 (2.57)

_At+ _4At= 1By basic rule d, this, in turn, implies that

and the recurrence relationship for stage A makes this equi-

valent to saying that _4t + _Bt = i. But since _Bt = _6t = i,

this would require at least two consecutive _ events for stage

B, a clear violation of basic rule b on page 52. As a result,

the cycle described by equations (2.54) is impossible.

The second cycle indicated on page 58 is described by

_B = _2t

2t
_B = C(B

(2.58)

Again choosing a reference point where _B = 1 permits

the statement

_B_t _ t = 1 (2.59)

or t_t _t_A = 1 (2.60)

By basic rule d, on page 52, this means that A = l, and by

the recurrence relation for stage A, this indicates _t= i.

_2t _tBut this is impossible, since B = = l, requiring that

_t = 1. Therefore, this second cycle is also not possible.
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The conclusion of this brief analysis, then is that the

2421 counter is stable in response to any finite sequence of

signals, that is, either in the process of normal count or

in response to an_ transient disturbance.

In the preceding study, three tables were used only to

demonstrate the development of a cycle table in its different

stages of progress. In practice, a single table might have

sufficed and identification of the rules applicable to circled

figures would have been omitted. Note in particular the

economy of this method of analysis: At first, only basic

rules were applied. When their usefulness alone was exhausted

a simple part of the recurrence relationship was applied and

finally, an observed result of this application was used to

complete the development of the table. In this way, the more

involved logical relationships entailed in the recursion

formulas for the circuit were avoided until they were actually

needed, by which time their application was limited to the

investigation of only two possible, well defined cycles --

both of which turned out to be incapable of recurring indefinitely.

The simplicity of the proceding analysis served to

demonstrate the basic attack on the general stability problem.

It should not, on the other hand, be mistakenly assumed to be
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shared by all counter-type structures; the sad fact is that a

thorough stability analysis is in general a tedious task.

Whereas the response to a command pulse p, _ven an initial

state of rest for the circuit, involves the relatively

simple problem of following a single signal through the

circuit, the complete circuit action will usually be based

on a large set of possible initial conditions, any of which

may appear in the circuit as a transient disturbance° A

stability analysis is therefore a necessary as well as

laborious task° However, the analysis method just described

makes this task as simple as possible, by using at any step

only as much of the natural and imposed constraints as is needed.

To show an example of a moderately complicated stability

analysis, reconsider the circuit in Figure 2°6° As was

previously indicated, it is sufficient to examine the transitions

of stage B to determine the stability of the entire circuit.

Neglecting terms originating from the command pulse p gives

+ 2t + t _t 2t _t_B _B = _ _B _A + _ _C

(2.61)

various possible _B and _B signals present in that slice. This

As in the previous example, a cycle chart is constructed

containing a "slice of time" three subintervals long and the
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appears in Table 2o4° Since the transitions of stage B depend

this time on past values of _B as well as _B' there is a greater

number of possibilities for distinguishable results.

The chart is now filled in as follows_

l o Apply all basic rules, where applicable.

2. Notice from recursive equation (2o61) that

_3t___.(_2t _ _2t ) sequence produces nothe

transition at the reference time° Up-date

and back-date this feature throughout the

chart° Notice that this eliminates line 2

(contradiction of recursion equation) and lines 1

and 12 (response dies out)o

3. A conclusion from the data thus far is that an

_--P-(_- _ )-*-(_-_ )sequence stops all

circuit action° Since the number of consecutive

zeros in the chart must be even everywhere

(because of basic rules c and d) this actually

implies a sequence of six zeros in the table o

Hence, the maximum number of consecutive zeros

at any point must be 4, if circuit action is to

be kept going° Enter this feature into the

chart, putting encircled l's and O_s where

necessary, to keep the number of consecutive

zeros even and equal to 4 or lesso
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Event

time

Event _ fl

Line 1 _

31 o o

4ooo

5ooo

6 o O

71 o o

8o o z

9ooi

i0 0 0 1

Ii 0 0 1

12 -1 O

13i 10

14 10

15 1 0

(k-a)t

8_
I

v

00

0 1

O 1

10

10

O O

O O

10

10

g% £%
v v

0 0

0 1

O 1

!

.% .%
v v

0 !

I 0

0 0

C _, 3 C

(

O 0

01

(k+a)t (k+3)t (k+4)t

signal dies out

ontradiction

0@Q o o

I 0 0

oo®Coo o
0 1 0

o o ®C o o @@
1 0 0

o o@(£o o o
0 1 0

T T.T t. T T

0 1 0

00

100

@@ o

signal dies out

Table 2°4
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The result of steps 1-3 is Table 2°4°

4o In Table 2.4 notice that 6 of the 12 sequences

end with the sequence

Now if this sequence can be shown to be stable,

a good portion of the problem will be solved°

To do this refer to equation 2o61 in greater

detail and enter the possible instabilities in

a new table. This is shown in Table 2°5. As

may be seen, two sequences can be distinguished,

2t
depending on the response of stage C to the (_B

pulse° In keeping with the spirit of this

analysis technique, the use of more complicated

logic relationships will be avoided by simply

producing the two possible sequences forcibly

and observing the results°

One possibility consists of setting stage B (producing an

_B signal) while stages C and A are in the 1 state. This

produces the following action:

(lO1)--,--(nl )----(no)--,- (ioo) --..-(ooo)-,,..(OlO)-..-(on)-..(nl)

The last state is stable. The other possibility is artificially

produced by setting stage B while stage C is in the 0 state and

stage A is in the 1 state; the result is
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(I00 )_( Ii0 )--_ iii )_ (011 )_(Oll _ (i01 )

the last state being stable. Thus, the sequence ( _ - _ ) -

( _ - C( ) - (_- _ ) - ( _- _ ) ..... leads to a stable

response and all rows in Table 2.4 ending with it can be

disregarded.

Next, consider the remaining rows. Write each twice

in a new table, entering a 1 and a O, respectively, as the

first entry that is thus far uncertain. This is shown in

Table 2.6. Some of the cases will be seen to lead to the

sequence already identified as stable and may therefore be

crossed out. Reapply these new results to the rows still in

doubt. The startling result is that only two new sequences

emerge which are independent of each other and at the same

time do not lead to the one already shown to be stable. They are

)-_C _- _ ) and(_- _ P---C_-G )---C_-

)---C _- _ ).

These can now be investigated in the same way as was done in

Table 2.5. The results are that the first sequence is

artificially produced by triggering stages B and C while the

circuit is in the lOlg state or triggering A, B and C while the
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Event
time

Event

Line 5

C 0 0 1 1 ^iv, C C O I 0 O, C

0 0 CO 1 1 0 0 1 O>_--new sequence a

Line 7

Line 9

ooiooicoolooi0 0 1 0 0 1 1 0 0 1 0

new sequence b

O 1 O O 1 0 r^_v C O 1 C ^_ 0vl

0 1 0 0 1 0 0 1 0

Line II

0 1 1 0 0 1 O 0 1 0 0 1

0 1 1 0 0 1 1 0 0 1 0

0

Line 14

I C C I C C C C I 0

i 0 0 i 0 0 i 0 0 i

In 0 C 1 C C_kv

0

Line 15

I C 0 i i O r.._.v C C 1 C ^_vj 0

1 0 0 1 1 0 0 1 0

Table 2°6

Elimination of Sequence Analyzed in Table 2.5

(Line numbers are those of Table 2°4)
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circuit is in the i00_ state. The response is stable in

both cases. The second sequence is generated by triggering

stages A and C while the circuit is in the llO_ state or

triggering A and D while the circuit state is llllo (This

excitation can serve only as a starting input, since stage D

is not part of any loop)o Here, too, the response is stable,

establishing the stability of the circuit°

As in the case of the 2421 counter, the principal technique

in the stability analysis just performed has been the progressive

application of basic and imposed constraints to the cycle

tables until only three distinct sequences of transitions on

the part of a stage were identified as possible manifestations

of unstable behavior. Associated with these sequences were

only six combinations of starting states and inputs which

could produce them artifically, and the behavior of the circuit

was easily checked for all six combinations. Contrast the sim-

plicity of this methodical technique with that of trying out

every one of the 240 possible sets of starting states and inputs

(16 possible starting states X 15 possible nontrivial trigger

inputs).

Once the stability of a circuit has been established,

it is possible to specify in detail the behavior of the circuit
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in response to the externally applied command signal and

thus answer the important question "What does the circuit do?"

The next chapter will be devoted to answering this question -

regardless of when it is asked.



III. SUBINTERVAL ANALYSIS OF THE STABLE CIRCUIT

As was seen in the last chapter, subinterval logic is

capable of rendering a clear and compact description of the

various events that comprise the circuit's transition from

one stable state to the next. If the circuit's stability is

in question, recursion equation sets such as (2.23) (for the

2421 counter) and (2.39) (for the counter in Figure 2.6)

furnish the most useful description of the circuit's behavior.

If, on the other hand, the circuit is known to be inherently

stable, a far more informative and directly usable description

is possible. The development of such a description will now

be considered in some detail.

Suppose a circuit is examined by the methods discussed

in Chapter II and a set of transition equations is determined,

having the general form

N-I N

k--O k=l

Suppose further that a stability analysis is performed and

the circuit is found to be stable. Then, a state of rest ma_

be assumed at event time or, when a command signal p is

applied and likewise, the transition may be assumed to consist

-- 70 -
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of a finite number of events. By Theorem 3 (see page 25) the

equation set represented in vector form in (3.1) can then be

written in the form
M

I !

, : t._l[,,<]__ c3._>
v

k=O

where [_] are now vectors associated with the state of the

circuit at Ot, (kt subintervals ago), and Mt designates the

last significant event time.

The form of equations (3.2) shows graphically how simple

it is to 8ingle out a_T event time (it) and specify the

signAficant events at this time.

,_._,,<e=..o<_o,,o_.,J_[_],.,,[,].

'>J<[']['__l: ,>J':[']

can be seen to reduce simply to

,>_<[,] =

since pJtpkt _ 0 for J # k.

M

k=l (3.3)

_j]pjt (304)

But this is simply the set of events occurring at event

time it. Thus, the circuit's action at any event time is
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simply the projection of the complete transition vector onto

the pjt function and the behavior of the circuit can be

easily analyzed by beginning with the p "component" and

proceeding to pt p2t, ..... etc °, "components". When all the

components have been found -- and they can be, since the

number of events in a stable circuit is finite -- the analysis

is complete° Not only does the result provide a clear event-

by-event picture of any transition the circuit makes but it

also determines the stable state eventually reached by the

circuit, which is often not known° This is found by the

relation

j=O

In the above equation, E_] and _-_ are the kl and (k-1)D

stable internal state vectors, respectively, _ is the

multiple ring sum operation and _j( _-_ _ are the transition
f'1_ -n

vectors _j] evaluated for L_-_ o In other words, for the

analysis method to be useful, the general expressions for _Jl

must be referred to the state of the circuit at or, which is

assumed to be known. For example, a typical transition vector

might be
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tB4tC4tD

_4tB4tc4_4y

In contrast, the setup techniques presented thus far do

not yield directly expressions of this form when expanded in

terms of their pit components but are rather composed of terms

of the type AtB2t_tD4tp4to Direct use of such terms entails

the obvious difficulty that Atp 4t is A at event time 3t,

B2tp 4t is B at event time 2t, and so on. These quantities,

on the other hand, are not known explicitly, and converting

them computationally into equivalent expressions referred to

the state of the circuit at Ot may be a cumbersome and discourag-

ing task involving tracing back all previous action of the

circuit° What is needed, of course, is a simple technique

that progressively performs this conversion, eliminating unknown

terms as they occur° Such a method will now be presented.

Since the reasoning underlying the method is lengthy, if simple,

it will be discussed only after the technique has been fully

presented and illustrated°
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The first thing that is needed is a convenient shorthand

notation for certain quantities° Let any level quantity

referred to event time Ot at time kt be simply underlined

rather than shown with the superscript kto For example,

A3tp3tA_p 3t. Further, let any level quantity usually shown

with superscript t simply be shown without any superscript

or underline. For example Atp 3t Ap 3t. The analysis method

now proceeds as follows (See layout illustration in Table 3ol):

lo Write down the connection matrix EC_,

leaving off the superscripts t, and complementing

all literals originally not superscripted

(e_g., terms corresponding to S or R inputs).

For example, AB t becomes _B. (This will be

explained shortly).

2o Immediately to the right ofIC_ , write down

the column vector _To_, which is called the

zeroth transition vector° This is simple to

find, since it is the response of the circuit

at O_____t,and thus involves nothing more than

locating all memory inputs connected to p,

either directly or through gating° For

example, suppose p is connected to a four-

stage circuit in such a way as always to trigger
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D, and also set A if B = l°

transition vector TO is defined by:

Ac

I p=

Then the zeroth

o

o

P (3°7)

Note that the nonzero quantities inside ITol

are underlined since they refer to conditions at Ot.

Above the zeroth column vector, write "p"

identifying the event time° Next to p, write

,,pt ,, ,,p2t ,,, ,,p3t ,,, etco, thus labeling

columns to be filled in by succeeding transition

vectors.

Under .pt . enter the first transition vector

obtained by

=
Now notice that the literals originating from

[C_ in each product term of T1 are not

underlined. These must be converted to their

underlined equivalents. Take one literal at a

time and perform the following simple operation:
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o

_,;1-- t_]t _k__ c_._.o_
In _7 , take one literal Q of a product term

L_=.J /1

at a time and note its underlined portion (_).

Consult the _Q items in all previous

_t_oo ,_o_r,,_o_t_o.____,
(these form a row in the gradually growing arra,v

of column vectors). If the number of items
/1

implying (__.__.) is even, complement Q and

underline it; if odd, simply underline ito

Cancel resulting terms of the type ABCB as they
mm_--

occur.

Continue step 7 until a zero vector results.

The analysis is then completed°

The result yields directly all the terms for the expansion

M

k=O

properly referred to conditions at Ot, so that given a starting

state, it is simple to determine whether or not a quantity Q

undergoes a transition at some event time kt by simply examining

the _Q item in uaJrT'-7.If this item does not imply the
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e

In _l , take one literal Q of a product term
/1

at a time and note its underlined portion (_).

Consult the _Q items in all previous

transition vectors, _O] through _k-_'

(these form a row in the gradually growing array

ef column vectors). If the number of items
/'I

implying (____.) is even, complement Q and

underline it; if odd, simply underline ito

Cancel resulting terms of the type ABCB as they

0 C CtlL¢'.

Continue step 7 until a zero vector results.

The analysis is then completed°

The result yields directly all the terms for the expansion

M

k=O

properl2 referred to conditions at Ot, so that given a starting

state, it is simple to determine whether or not a quantity Q

undergoes a transition at some event time kt by simply examining

the _Q item in L_aj[T'-_°If this item does not imply the
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starting state, no transition occurs; if it implies the starting

state, a transition does occur.

At any time, including at the end of the transition

action, the state of the circuit can be determined by counting

transitions corresponding to the starting state. If their

number is odd for a literal, the literal is complemented.

If even, it is the same as at Ot.

At this point it will be best to illustrate the technique

just described with a concrete example. This will be the sub-

interval analysis of the circuit in Figure 2.6, whose stability

was established at the conclusion of Chapter II°

Part of the analysis is performed in Table 3°20 Comments

are added as needed o The entire analysis is repeated in

more compact form in Table 3°3o

Now as to the interpretation of the results in Table 3.3°

The quantities appearing in the table to the right of the

kt
connection matrix are the coefficients of the p terms shown

above them. For example, row 3 is interpreted as:

A B = (_)p2t. ¢A__)p3t. ¢_)p4t + C__D)pSt

C3.12)

which is equivalent to

A B = (CD)2tp2t(A_D_tp 3t +(ABCD)4tp 4t +(A_D)Stp 5t

(3.13)
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Much information can be gained from Table 3-3. For

example, it is clear that the longest response for the

circuit takes 7 event times and corresponds to initial

states ABCD, A_CD, or A_. Stage A is the laggard in these

transitions.

The shortest transition takes only one event and that

is an _D for any starting state having a D.

Stage C can never undergo a transition at event time 2t.

Stage A can never undergo a transition at event time St.

For an initial state with A , stage B reaches its new

stable state B • CD relatively early (after a single

transition at event time 2t). Otherwise, it may undergo

its last transition as late as event time St.

The preceding are only examples of circuit characteristics

that may be read off directly from a table such as Table 3o3,

and are intended to give insight into the wealth of information

contained in such a table -- despite its compactness.

Perhaps the most useful feature of Table 3.3 is the ease

with which it can be used to find successive stable states.

What is used is simply the relation

M

jm
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as previously indicated. What this means in practice is

that given an initial circuit state, one counts for each

literal the number of transitions in the row corresponding

to that literal. This is, of course, the number of terms

implying the given initial state. If the number of transitions

is odd the net effect is complementation. If even, the net

effect is that of no transition.

For example, the successive states for the counter in

Figure 2.6 are easily calculated in this way from Table 3.3.

Initial Stable State Next Stable State

ABCD ABCD

0000 0001

0001 I010

0010 0011

0011 iii0

0100 0101

0101 iii0

0110 0111

0111 I000

I000 i001

i001 I000

I010 i011

1011 i010

ii00 ii01

II01 1010

Iii0 iiii

iiii Iii0
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The state diagram for the circuit is shown in Figure 3.1.

As may be inferred from this odd diagram, the practical

usefulness of this circuit is doubtful. However, the circuit

did serve well to demonstrate the use of the analysis technique

just discussed.

In passing, it might be interesting to apply the sub-

interval analysis method to the extremely simple circuit

shown in Figure 2.5 on page 30o (Its stability is easily

shown and will not be worked out.) The connection matrix

and transition vectors are

_ 0 0

This indicates

= P + _2tQ2tp2t

_R = Qtpt
(3.15)

t 2t
P P P p3t

0 o

which was asserted in Equations (2o19b) and (2.20b).

Thus_far in this chapter, subinterval analysis has been

presented in "recipe" fashion, simply because the bookkeeping

scheme illustrated has been found from experience to be the

most practical among a very wide variety of possible ones.

Detailed explanation of every step in the method would have
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t t

t t
5t

t 7t

Figure 3. 1

State Diagram with Duration of

Circuit Action for Each Transition
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obscured the practical aspects of the method's use. At this

point, the reader is believed to have sufficient grasp of the

technique to inquire into the reasons for the various steps

in the technique and for the order in which these steps are

undertaken.

In addition, one gap, purposely left in the preceding

explanation for the sake of simplicity, will now also be

filled in: the treatment of the situation where some of the

direct inputs from p are set or reset inputs rather than

trigger inputs, giving zeroth transition vectors such as

1

i

As will be seen, the disposition of this case is virtually

as simple as that of the trigger inputs alone.

Consider, to begin with, a typical transition vector

_, resulting from a [To] produced by trigger inputs k

subintervals ago and propagated through the connective circuitry

characterized by [C] t o Single out a typical element in [Tk] ,

suchas ___ inthe _C position._ thenotatio_shorthand

previously explained, this term means that stage C will undergo
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a transition if A was "I" one subinterval ago and the last

stable state, defined at or, had a _D. The difficulty, of

course, lies in the determination of A one subinterval ago,

and it is quite likely that the engineer studying the circuit

will not have this value at hand when consulting the chart;

instead, the value of A at Ot will be known° Therefore, it

will be convenient at this point to express the unknown value

of A in terms of the known value defined at Oto This will be

very simple if such adjustment has been performed for all

previous vectors as soon as they were formed; in such a case,

to the stable state at Ot and the circuit action is easy to follow.

The method for adjusting A in FT_lis simply based on the
L__j

A if stage A underwent an even number of

transitions among event times Ot through

(k-2)t.

A -- _ if stage A underwent an odd number of

transitions among event times Ot through

(k-2)t.

However, the fact that the literal A without underline

appears in a term of F_o7 indicates one of two things:

reasoning that

A =
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ao

bo

Stage A underwent a transition at event time

(k-l)t as well as at any time among (Ot) and

(k-2)t, and thus produced a transition pulse

at kto

Stage A had a level llne gated with a

transition pulse of other origin produced at

(k-l)t. Then A did not undergo a transition

at (k-l)to But, the same effect (i.e., the

ease present value of A) can be obtained

by _retending A was of opposite polarlt_ one

subinterval a6o and that itunderwent a change.

If this is done at each step the proper value

of A _iI always be had. The easiest we_7 of

carrying out this "pretense" is to modify the

source of the A-level term. This is, of course,

the connection matrix [C_o There, the level

quantities gated with pulses appear without

L

the superscript to The same is true for quantities

corresponding to S and R inputs (eog., A_ t used

to indicate a reset for stage A by an _B pulse).

The modification consists simply of backdating

the level quantit _ one subinterval and complementing

it. The result will give all quantities in
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C]t a superscript of t, which is left off

when the matrix is written in the shorthand

form for analysis° This explains the mysterious

operation described in step 1 on page 74°

In conclusion, then, no matter how the literal A without

underline came to be in _k_' it can always be made to appear

as though it came as a result of a transition on the part

of stage A at event time (k-1)t -- whether in fact or not.

In that case, this transition can be added to those among

event times Ot through (k-2)t, giving the following rule for

A if stage A underwent an odd number of
m

transitions among event times Ot through

(kml)t

A = _ if stage A underwent an even number of

transitions among event times Ot through

(k-1)t

By this method all quantities without underlining that

appear at kt are easily converted to their underlined counter-

o,.cto,o °
Note that all non-underlined quantities now automatically

refer to event time kt while all underlined quantities refer

adjusting A in _ :

A =
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to event time Oto In short, all explicit reference to other

event times has been eliminated. In addition, one simple

uniform rule for adjustment of non-underlined literals

applies in all cases.

The question still remains, of course, as to how one

decides whether or not stage A underwent a transition at

some past event time. This is deterLined by the starting

state of the circuit, implied by the underlined portion of

the term to be adjusted° Once the terms of a transition vec-

tor for a given event time have been expressed in underlined

literals only, the _A item in the vector will indicate

directly or b_ implication all startin_ states for which A

will undergo a transition at the event time in question.

Thus, in adjusting the non-underlined A, one simply counts

among all past vectors the A A terms that imply the startin E

state, and then complements on an even parity basis.

The problem now arises as to what constitutes implica-

tion when a set or reset input was used at time Oto

Specifically, suppose for example a particular circuit is

described as follows:
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P pt p2t p3t

A D 0 0 0 0 1 0 0 0

o o D O

0 0 0 _A 0 ___etc. (3o17)
AA _ 0

The A in the zeroth transition vector indicates stage A

was reset by p o The problem now is to adjust A in circled

term a. The rule on page 89 states that if an even number

of terms in circled area b implies _D , the A should be
--a

complemented and underlined; otherwise, it should merely be

underlined° However, it is not clear whether or not the

term "A" implies CD. The answer is that if A = i, it does;

if A = O, it does not° Thus, the A in the circled term_

becomes _ if A = i and A if A = O o In logical terms this is

A = Ai+ XA : O (3o18)

Similarly if the zero in circled area@were replaced

by a D, say, then the parity relationship for A would change

and A would be A if A = I, or A if A = Oo This is written as

A = AA+ _ = 1 (3o19)

This interesting result bears out, of course, the fact
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that A can under no circumstances be equal to I at event time

2t since it was reset at Ot and did not change at to However,

the result was obtained without recourse to intuitive reasoning.

Setting up equations such as (3o18) and (3.19) is not

only confusing but unnecessary. The same result is obtained

by treating the A in the zeroth vector as 1 and then resetting

A in A_D if circled area b has an even number of terms implying

_D or setting A otherwise.
_m

Clearly, for the example in (3o17) i implies _D , giving

A_D - O.
m_

The identical reasoning applies to set inputs. If stage A

had been set instead of reset at time or, an_ would replace A
m

in _0_" Then, to adjust A in A_, again treat A as 1, which

here simply means treat I as O, and repeat the procedure

described for resets. The result for the example in (3o17)

would have been A_D = _D.

To sum up the techniques for treating set and reset inputs,

treat both exactly the same: in _0_' replace Q in AQ by i;

check parity of transitions as for trigger inputs; reset on

even parity, set on odd parityo

Logic Reduction of Transition Vectors

Relatively simple logical expressions appeared in the

transition vectors used for examples in the past section and
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the question of logic reduction did not enter the discussion.

Yet, since simplicity is a keynote of the subinterval analysis

technique, such an important avenue to its achievement must

certainly be explored o

The terms of a particular transition vector will be of some

general logical form, not necessarily reduced with respect

to any common criterion for simplicity. Most often, this will

be the union-of-intersections (sum-of-products) form. Before

hastily undertaking to simplify such terms by any of the

popular reduction methods, one must first realize that certain

algebraic peculiarities enter into the reduction of logical

quantities having mixed event time referenceso Secondly,

one should be aware that the unreduced logical expression for

a transition may contain important information that vanishes

with logic reduction° Specifically, the particular constitution

of a transition signal may indicate the presence of a pathological

timing condition, such as a critical R-S, R-T9 or S-T race,

arising from an unplanned and unwelcome signal coincidence o

Figure 3°2 shows a circuit with a critical R-T race at

stage A for a starting state OOlo To uncover this fact,

examine the subinterval analysis for the circuit:
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, p

Figure 3.2
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t 2t
P P P

o c

_,C=O

C_ = _, -_,---

(3o2O)

The encircled term is a warning of possible trouble°

Yet were it reduced simply to C according to the usual

rules of logic simplification, the warning would be lost.

Specifically, the term is composed of two quantities having a

common intersection° This in itself would not constitute a

problem in the case of a T memory unit with an OR gate at the

input providing the individual signals were sufficiently close

to be unresolvable to the memory unit. This case, however,

involves an RT memory and the two distinct terms ACB and C

indicate that for a starting state of ACB at least, both a

reset and a trigger pulse will be applied to stage A.

Disregarding for a moment the fact that these pulses are

required to be non-coincident by stipulation, the most

optimistic statement that could be made concerning this

situation would be that if stage A is in the "l" state, the

R and the T commands are not in conflict° If, on the other

hand, stage A is in the "O" state, the two coincident pulses

are in opposition; this constitutes a critical race with the
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final outcome depending on which signal arrives at its

destination first and by how much.

To identify the starting state or states producing a

critical race at this point, if any, a very simple technique

is used° It is based on the following line of reasoning:

To begin with, the circled terms ACB and C in (3.20)
no_

identify transitions, not input signals. Now for C,

associated with a trigger input, the two are synonymous since

the memory unit will switch whenever triggered. The shortcoming

is that the polarity of the transition is not known. In

contrast, the polarity of the transition, if any, associated

with AC_ is known (it can only be a _ transition), but

what is not known is all the conditions for which a pulse

will appear at the R input of stage Ao The condition being

sought, of course, is the appearance of a pulse at the R

input and simultaneously, a required _ transition initiated

by a pulse on the T input° In other words, the information

needed is precisely what is not known about both inputs°

The problem is resolved in straightforward fashion,

without the necessity of obtaining a general expression for A

at event time 2t, (relatively easy for this example but

often very laborious)°
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Consider the transition vector rT1] and the circuit action
t. --_

I'll
somehow reach into the circuit at event time t and quickly

move the trigger input line of stage A to its set input and

its reset input line to its trigger input, the term replacing

the trigger term C would indicate only that subset of C
D

which results in an (_ transition. The former reset input,

on the other hand, is now a trigger input so the former reset

term AC_ would be replaced by one indicating all starting
mmm

conditions for which a pulse appears on this line. The

two new terms thus give precisely the information sought and

their intersection specifies directly the starting states

for which a critical race occurs at event time 2t.

The input line manipulation just mentioned is easily

performed mathematically by picturing a temporary modification

of ECJ t . For the example in (3.20), imagine that the A A

(third) row of the transition matrix is at event time t

momentarily changed to

The resulting /_A term in _T21 is then

?,_ + A.SC = C_ + _.C (3.;_; ')

The intersection of the two terms is ___C, identifying 001
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Consider the transition vector rTll and the circuit action

defined by £C_ t that eventually produces £T2]. If one could

somehow reach into the circuit at event time t and quickly

move the trigger input line of stage A to its set input and

its reset input line to its trigger input, the term replacing

the trigger term C would indicate only that subset of C
o

which results in an _ transition. The former reset input,

on the other hand, is now a trigger input so the former reset

term AC_ would be replaced by one indicating all starting
_we

conditions for which a pulse appears on this line. The

two new terms thus give precisely the information sought and

their intersection specifies directly the starting states

for which a critical race occurs at event time 2t.

The input line manipulation Just mentioned is easily

performed mathematically by picturing a temporary modification

of [C] t . For the example in (3.20), imagine that the A A

(third) row of the transition matrix is at event time t

momentarily changed to

The resulting /_A term in £T21 is then

+ ASC = C_ + iC (3.22)

The intersection of the two terms is __X__, identifying 001
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as the starting state for which there is a critical race at 2to

Thus, if only critical races are to be avoided, the 001

state must be avoided, or the circuit must be redesigned°

If all R-T coincidence is to be avoided, as is more commonly

the case, the startin 8 conditions involved are defined by

the intersection of _C (identifying all trigger inputs)

and C_ (identifying all reset inputs);namely, CB , corresponding
--m m_

to starting states 001 and 101°

The operation Just dis_.,ssed is readily generalized

for R-S-T memory units. To avoid all input coincidence,

at a given event time all inpu_ are imagined to be trigser

inputs at the preceding event time and the trouble-producing

conditions are found by multiplying the former R, S, and T

quantities among themselves, two at a time, and then taking

their union= For example, a modified _A term _ + _A-_C+ _ =

x + y + z would identify the trouble-producing starting

condition _y + xz + yz = AB_ + ABC = ACo In obtaining

the above result, it is important to have the individual

terms x, y, and z maintain their separate identities until

one is ready to combine them, since they may be more complicated

than simple product terms. The easiest way to do this is to

separate clearly each quantity arising from a single term of

the matrix tC_ .
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If only critical races are to be avoided for an RST

memory, the inputs must be examined two at a time. Eliminate

R-T critical races by repeating the techniques described on

page 97° Repeat the process for S-T critical races by

temporarily replacing T by R and S by To Finally eliminate

all R-S coincidences -- since they always constitute a

critical race -- by temporarily replacing both R and S by To

Each such examination will identify the starting conditions

producing the particular race. The unio__.__nof these three sets

of conditions identifies the starting conditions producing a

critical race at the event time in question.

Once all timing problems for a given transition vector

have been identified and resolved, logic reduction of the

individual components can be undertaken without further

concern° The usual rules of logic reduction apply, providing

all literals in a component are underlined o They do no__t

when underlined and non-underlined literals are mixed.

For example, the operation

A_CD + *mCD - A(BCD + _CD) _ ACD (3.23)

is not legitimate simply because the value of A corresponding

to each A m_7 not be the same. An example of such a case is
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shown below:

t 2t
P P P p3t

O

ABCD+
mmo m----

(3°24)

Now notice that only _ (an odd number of terms) implies BCD,

while both _ and _B_CD_(an even number of terms) imply _B_CD_.

Therefore, the A in AB__CD_is simply underlined while in ABCD ,

it is complemented and underlined° The result is

ABCD + ABCD = ABCD + _CD = C_ CA @ B)

(3°25)

The general rule for simplification of mixed terms is

that non-underlined factors of the same underlined product

/I
(d-___) can be collected and simplified_

not true° For example, the operation

but the converse is

ABCD + TkBCD = (A + A)BCD = BCD (3.26)

is valid since both terms are based on the same starting

condition BCDo This makes the value of A the same for both

terms allowing the use of the relation A + A = lo

The general rule just stated has been given mainly for

the sake of completeness. In practice, an operation such
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as (3°26) should be avoided because it will eliminate

possible indications of critical races before they can be

identified and analyzed. It is far Preferable to convert

all mixed terms to their fully underlined equivalents without

simplification. All reduction previously possible will still

be possible in the fully underlined form, after all critical

races have been eliminated.

This concludes the develcl_ent of the subinterval analTsi8

technique to which this chapter has been exclusively devoted.

Throughout this development, the aim has been the formulation

of a unified alKoritba hag an optimLlly small set Of simple

and uniforn rules.

In order to proy_de this sinplicity and unifortLty, certaJ_

modifications in the actual circuit were at times mathematically

simulated in order to fit within the carefully selected rules and

still furnish correct results° The correct results, it is felt9

Justify the use of these hypothetical modifications° They can

be dispensed with, on the other hand, only at the cost of a

much more extensive set of rules and a corresponding increase

in bookkeeping complexity°



IV. SYNTHESIS OF TRANSITION-COUPLED (X)UNTERS

In Chapters II and III, a logic algebra was formulated

within whose framework a transition-coupled asynchronous

counter of known structure can be described in a consistent

logical-algehraic form, Using such a description as a working

basis, analysis techniques were then developed by means of

which the general stability and performance characteristics

of a circuit can be methodically investigated.

Throughout the discussion thus far, the existence of the

counter under comsideration was assumed a priori and at no

time did the question arise am to how the counter was conceived

and vk7 it was given its particular structure.

The surprising fact is that the overwhelming majority of

transition-coupled circuits are designed by heuristic means

alone. Their frequent simplicity and reliability attest to

the ingenuity and creativeness of their designers.

The reason intuition pla_s a major role in the design

of transition-coupled circuits i8 simply that few tangible

design criteria or operation specifications are available for

the general circuit. All that is often specified is the

sequence of stable states through which the circuit is expected

to progress during its operation. Hence, the choice of possible

- 102 -
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unstable states assumed during transition, coupled with that

of logic circuitry based on some suitably defined minimum

cost criterion, constitutes a degree of freedom that is

appalling o

Nevertheless, the literature has not ignored the problem.

In particular, the transition-coupled circuit in which any

memory unit can undergo no more than one transition between

stable states (see Chapter II) constitutes a special case

that lends itself to moderately straightforward design

(24)
procedures° Mergler and Marcus , for example, have

developed adaptations of the Karmaugh map design method,

using transitions as additional variables, but only Mergler

(n)
has used them as actual line signals o Eichelberger has

also considered this case at length and has developed a new

type of circuit realization called a "delayed-input circuit".

This circuit, inherently free of critical races, generates

"hazard pulses" (pulses generated by deliberate delays) to

change its internal state and is in actuality not a

"coupled" circuit in its truest sense; that is, memory unit

transitions are accomplished independent of each other°

Once the restriction of this special type of operation is

removed, the design problem is beyond the scope of formal

optimization techniques. To aggravate matters, extensions of
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design procedures available for special cases give extremely

poor results whenapplied to the general case -- hence, the

need for intuitive design techniques by the engineer.

This chapter will attempt to facilitate the intuitive

design approach by furnishing a formal basis about which the

design can evolve° Examples of actual designs will also be

presented o

One of the principal problems in synthesizing transition-

coupled counters is that of obtaining a good preliminary

description of the circuit's action° Specifically, the common

systems of circuit specification describe a circuit in terms

of its level-coupled counterpart° What is needed in its

stead is a form of description that can describe a transition

between stable states in a way that clearly suggests asynchronous

transition coupling among the individual stages° To be sure,

the description could not be expected to yield all the possible

coupling schemes for a given counter requirement, but it

might be expected to indicate one of them.

The easiest way of obtaining a description such as

mentioned above is to envision the action of a counter to be

designed in terms of equivalent action by a transition-coupled

counter already known. The familiar counter thus serves as a

"model" for the one being synthesized and as the count sequence
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for the latter is studied, the question is asked, "What inputs

and added coupling would be required to make the model describe

the required sequence?" If these inputs and additions prove to

be feasible, the required counter is then designed as an

adaptation of the model.

The "model" counter to be used as an exsmple in this

chapter is the familiar standard binar 7 adder, shown in Figure 4.1.

It consists simply of a set of T-type memory units with each

connected to the _t output of its neighbor totrigger input

the right and to a possible p input from the outside. The

connection matrix E C] t and =eroth vector

as shown in Fis_re _.i are

_D 0 0 0 O_

AC 0 0 0

C 0 0

A A 0 B O/

T_ for the circuit

t
P P

..... etc.

-5
(W.l)

The feature of particular interest, however, is that if

the binary word ABCD is read as a number in the standard binary

code having the numerical value

V - 8A + _.S + 2C + D (4.2)
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then the circuit shown adds the number

,- 8.3÷%÷ ÷ (4.3)

to the contents of the counter. The resulting state of the

counter is the sB modulo 16 of V and y.

It should be noted that the symhol + in (4.2) and (4.3)

is the standard algebraic addition (.PLUS) connective rather

than the logical union (OR) connective.

From equations (4.2) and (4.3) it is apparent that the

behavior of the binary adder can be described in a very com-

pact form. Using the relation

(V' - V)mod 16 - • C4.4)

the change in the reading of the circuit contents can easily

and uniquely be expressed as the numerical value of v.

For example, for _ = i, _ = a2 = _ = 0, the equation fully

specifying the counting action of the circuit in Fisure 4ol is

v. 1 C .5)

In verbal terms, this simply states, "To go from any

stable state to the next stable state, add 1."

It is now only a short step to the extension of the above

philosop_7 to include sequences other than those characterized
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by the addition of a constant. Consider, for example, a

general cyclic sequence of three-digit words

Q

s

_o co)

el)
o

0

B7 c7_

Bo Co)

(4o6)

Vk=%+%+%

word is assigned a numerical value according to

(407)

the transition between a_7 pair of successive words can be

characterized by the addition of a numerical quantity given by

vk = (vk+l - vk) =od 8 (_.8)

Assume for the moment that there is no redundancy (i.e., all

eight possible words are permissible) or ambiguity (i.e.,the

sequence is cyclic in excctly 8 words). Then, if each binary
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Thus, a value of vk corresponds to every value of Vk

in the sequence o For the general case, vk is not a constant

(as in the case of the standard binary adder) but is a function

of the particular value Vk

"k " "kC'k)

and u a result of (4.7) this naturally makes vk

o_thedi,_t,,_.'kand%.

C_.9)

a. function

"k " "k¢_' _,' %)

The general form for v is

• . i_ ,Co,o,o)+ ]t_ ,Co,o,i).......

..... ÷ ABC v(l,lol)

C4.1o)

(#.ll)

This interesting sum of weighted mlnterms is simply a formal

standard-algebraic statement replacing a tabular list of

relations in the form of ($.10). Whereas an expansion of this

type is informative, one of more interest for purposes of this

discussion is the equivalent weighted exterm (13) expansion:

• . .0+.IC+.2S+.3SC+._A

+ -sAC+ -6As + _TABC ¢#.12)
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Since (4.12) must fit 8 distinct values of v and corres-

ponding values of A, B, and C, for the non-redundant case,

the values of the w coefficients are fully and uniquely determined.

They are the solution to the set of linear equations

v(vk) : "o÷ "l% ÷ .... • (4.13)

or

where Iv] and [w] are column vectors, [E]isa square Boolean

matrix representing the exterm composition for each specific

word, and the matrix multiplication is standard algebraic.

For the non-redundant case [E] is non-singular (its determinant

is equal precisely to i), _ving a umique set of w's as a

solution° A convenient way of expressing this solution is

wo = v (o)

wz : v (l) - wo

w2 : v (a) - wo

w4 : v (4) - wo

w3 : v(3)-w2 -'l -"o

"5 : v(5)-_4-"l-"o
w6 : v(6)-w4 -w2-"o

6

: v (7) - />_w 7 wj

j_

(4ol5)
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This set of equations points out the simple procedure

for determining the w coefficients for a non-redundant sequence

from a listing of the words and their corresponding values

of v. One begins by finding Wo, which is simply the value of v

opposite the word (000)o Using this value, coefficients

corresponding to single-literal exterms (A, B, etc.) are

found by consulting v values for words containing single l's

only. The results are then applied to words containing two l's

and so forth, until all the values of w have been found.

The procedure just described can best be illustrated

with an example. Table _.i shows a desired sequence with the

values of v shown and also the composition of v in terms of Wo

The sequence will be recognized as the three right-most

digits of the four-bit Parity Checked Gray (PCG) Code° The

values of v are shown in positive rood 8 form, although

negative values are equally acceptable from a formalistic

Point of viewo The values of the w coefficients are now easily

found:
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Row

. |

_(_)

@

®

®

®

@

®

®

A B C

0 0 0

0 1 1

i 1 0

1 0 1

1 0 0

1 1 1

0 1 0

0 0 1

Y

3

3

7

7

3

3

7

7

Composi tion

"o

,o+ ,,,1+ ,,,2+ -3

w0 + w2 + w4 + w6

-o+,,1+-4+,, 5

-o+-4

w0 + w 2

-O+Wl

Table 4.1
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(!) "o : 3

" @ W2 : 4

" @ wI = 4

" @ w4 = 0

" Q w3 = 0

" (_) w6 = 0

" @ w5 = 0

" _ w7 = 0

(4.i6)

The result indicates that the PCG counter is characterized

by the arithmetic equation

v = 3 + 4C + 4B (4o17)

What this means in verbal terms is simple "To go to the next

stable state, perform the addition operation indicated by

(4.17) on the contents of the counter."

As to how such addition is performed, it will be recalled

that any numerical value is added by triggering simultaneously

the stages corresponding to the location of l's in the standard

binary representation of the addend. Thus, 3 is added by trig-

gering stages B and C, and 4 is added by triggering stage A.

Notice also that in adding 3 by triggering stages B and C,

a resulting _B pulse will indicate a B at time Ot, and a _C

pulse will indicate a C at time Ot. Thus, pulsed signals
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representing B and C are available as a by-product of the

addition of 3 and conceivably they could be stored by means

of delays and eventually applied to stage A as additional

addends. Unfortunately, the matter is not as simple as it

might appear. First of all, the delayed signals would have

to be kept from interfering not only With the propagation

of the usual carry signals associated with the addition of

3, but also with each other. Secondly, to aggravate matters,

B is not the only logical quantity producing a _B signal. A

brief analysis using the subinterval analysis technique would

disclose that a _B can also appear at event time 2t as a

result of BC at Ot. In short, a direct implementation of

equation (4.17) is not easily and practicably achieved.

However, equation (4.17) is a standard algebraic equation

and can thus be manipulated according to standard algebraic

rules. Such a manipulation results in a rather convenient

synthesis, as will now be shown.

To begin with, all quantities in (4.17) are modulo 8;

therefore +4C can be replaced by -4C, which in turn can be

written as -3C-C.

v

Equation (4.17) then becomes

= 3 - 3C - C + 4B

= 3(I-C) - c + 4B

(4.18)

(4.19)
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But (l-C) is the standard-algebraic expression for C, which

finally yields

v = 3_ - c + 4B (4.20)

The implementation of this equation is very simple in

contrast to (4.17). The term "-C" means, "If C=l, complement

(reset) it without carry." The "3C" indicates, "If C = O,

complement (set) it and use the _C pulse thus generated as a

trigger input for stage B. (The setting of stage C adds C,

while the triggering of stage B adds 2 whenever there is a C,

i.e. adds 2C)."

What this reasoning requires in practical terms is simply

to remove the usual _C _ TB line of the standard binary

adder and introduce instead a _C _ TB line. Simply

triggering stage C then accomplishes the 3C - C operation.

As for the addition 4B, it is best to dispose of this at time Ot,

when there are no timing problems. Namely, no transition signals

appear at any input of stages A or B at this time, making it a

simple matter to trigger stage A with the pulsed signal pB,

formed by means of an AND gate on the "l" level output of stage

B. The subinterval equations for the resulting circuit are

T C = p

t
TB = _C (4°21)

TA = pB+ _t
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The synthesized circuit is shown in Figure 4.2. Its

stability is assured by the absence of loops.

The subinterval analysis for the circuit appears below.

t 2t p3tP P P

 ( 010)i0OOz% o o o _ o o

aA _ o _B o _ o

(4.22)

From (4.22), the next states in terms of the present

states are given by

C' = C _ 1 =

B' = B •

A' = A • B _ BC = A ®

(4.23)

BC

These equations are correct for the PCG code, as may be

easily ascertained by a Karnaughmap or any other standard

method.

Several points should be particularly noted in the

synthesis just completed° To begin with, the circuit shown

in Figure 4.2 is an adaptation of a well-known transition-

coupled circuit -- the standard binary adder -- and is thus

itself a transition-coupled circuit. Secondly, the circuit

has only one gate in addition to input buffering: a 2-legged
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Figure 4.
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AND gate. This is a considerably less costly design than

would be required for an equivalent synchronous counter free

of hazards and critical races.

Thirdly, it will be noticed that the counter has no

feedback loops; all signals travel "upstream". This follows

(3)
from the fact that the PCG code is a minimum dependency code

and is not characteristic of all codes. The feature does

4._4r._._, however, +_o+ +_o _oIo+_._ _^^_._^. ^4, _ A-._-

positions for comparison with a standard binary adder is a

matter of some consequence. Had any other arrangement of

digit positions been chosen (say, V = 4C + 2A + B), the

arithmetic analysis would have suggested an entirely different

synthesis from the one just completed. The problem of digit

position placement will be discussed further shortly.

As a final comment on the circuit shown in Figure 4.2,

notice that if stage C is "turned upside down" (i.e., the

side is regarded as the "i" side, _C as p_ , PC as

and V is defined as 4A + 2B + C) then the circuit takes on

again the appearance of a standard binary adder. In other

words, had the entire synthesis problem been considered in

terms of generating a sequence of numbers (_, _, Ck ),

rather than (_, _, Ck) , the arithmetic manipulation of (4.17)
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to produce (4.20) would have been unnecessary.

result would appear directly as

The same

v = i + 4B (4.2_)

This fact points out that in addition to relative digit

position placement, the choice as to which side of each stage

to use as the "l" side i_ the binary adder analogy also plays

a major _le in ^_+_-_ ^.......... _ = simple and elegant synthesis.

From the preceding comments, one may begin to appreciate

the magnitude of the degree of freedom facing the circuit

designer even in relatively elementary synthesis problems.

To begin with, there are n! distinct ways of ordering n digit

positions. Secondly, there are _ ways of selecting the "l"

sides for the n stages to be used (any of the 2n possible

words can be regarded as the O0 ..... O0 word)°

Finally, if the case is redundant, i.eo, r(<2 n) words

never occur in the sequence, then there is in addition

a set of r equations of the form

m. (A,B,C...,) = 0 (4.25)

where mj is the minterm corresponding to a redundant word.

Since the redundant words never occur, any value of v may be
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specified for each of them, providing no error checking or

correcting is required. In the mod 2n system, this amounts

to 2n possible values of v for each redundant word, any of

which -- not necessarily zero -- may result in a simplification

of the final synthesis.

It is an unfortunate fact that to date, no clear-cut

algorithm has been found that will indicate the optimum

choice of digit _ositions, variable assignments, and v

values for redundant combinations, where applicable.

Furthermore, even when one choice among all those mentioned

has been made and the corresponding synthesis equation

has been obtained, by far the simplest way of obtaining

the synthesis equation for some other assignment of digit

positions, variables, etc., is to repeat the entire process

used to find the first equation° With few exceptions, con-

version of existing results from one frame of reference to

another is difficult, though possible°

Despite the difficulties just discussed, certain considera-

tions prove helpful in finding a promising assignment of digit

positions, variables, etco _nese will now be briefly examined.

It was shown in reference 3 that the logical dependency

among the stages in a comparator (a form of adder) on each
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other is minimized if the digit positions are arranged in

order of increasing periodic cycle° Since the nature of

the logical dependency is not specified in this finding,

the result is applicable to cases where such dependency is

in the form of transition coupling as well as level coupling.

In setting up positions for a counter synthesis, the

positions with the shortest periodic cycle are placed at the

right and given a weighting of io The other positions are

arranged so that the longer the periodic cycle, the higher

the weighting. It has been found that where periodicity

is the same for a number of stages, the simplest syntheses

are obtained if positions having significant portions of short-

period cycles (though occasional interruptions increase the

overall periodic cycle) are placed to the right of positions

not having such cycles°

The position assignment rule just described not only

minimizes the dependency distribution among the stages in the

counter, but also tends to insure greater stability by

minimizing the number of loops needed° This is apparent in

the design of the PCG counter shown in Figure 4.2. Position C

has a period of 2 counts and was thus placed at the right.

Position B has a period of 4 counts and was therefore placed
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to the left of C and to the right of A, which has a period

of 8 counts. The resulting synthesis was loop-free as was

previously pointed out. Had someother ordering of

positions been used, the loop-free design possibility would

not have been easily discerned from the corresponding synthesis

equation.

The choice of variables ("l" sides) for the synthesis

problem is considered after the digit positions have been

assigned. The chief motivation in this phase of the design

problem is avoidance of signal coincidence or critical races

throughout the circuit. The existence and number of these

timing problems will be determined to a great extent by the

value of the constant w0 which indicates the external trigger

excitation if the synthesis equation is implemented directly.

Now, if w0 is a number whose binary representation contains

a relatively large number of l's, then many stages will be

triggered by p at event time Ot and a correspondingly large

number of transition signals is likely to be generated at

this time. This, in turn, makes serious timing problems

difficult to avoid, since a definite destination must be

found for all signals within a single subinterval. Where
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such destination is the same for two or more signals, a

temporary storage in the form of a delay is required for

one or more of these signals. This will tend to increase

component cost and hamper the speed. Therefore, as a starting

point, the designer should s%ek a variable choice by which

the binary representation of w0 has as few l's as possible,

preferably only one. As for its location, the nearer it

is to the right-hand end of the word, the better, since

this will minimize the need for feedback paths, as previously

discussed.

As may be inferred, then, a significant problem is

determinin E quickly and easily the wO coefficient for any

choice of variables. This is a simple procedure as will

now be shown:

For any choice of variables, w0 is the numerical value

of the word following the OO ..... OO word, as seen from

theframeofreference.Nowsup se .....) ischosen

as the O0 ..... OO word°

To obtain this frame of reference, every "I" in (_..)

had to be complemented to produce Oo Then, the same operation

must be performed on all the other numbers in the sequence

to place them in the same frame of reference. In particular,
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the number (_+l' _+l' Ck+l''') is transformed to the new

frame of reference by simply ring summing it with (_, _, _,..),

digit by digit° The resulting number is the bina_ representa-

tion of wO.

Using the above rule, a complete listing of w0 values

is easily obtained by ring summing the successive words of

a sequence in pairs, bit by bit. Table 4o2 shows the values

of w0 for all the possible choices of variables for the

3-digit PCG code.

As may be seen from this table, the variable choice

(A,B,C) has a w0 coefficient of 3, as was found in equation

set (4.16)o Later, it was pointed out that the preferable

variable choice (A,B,C) had associated with it a w0 of io

This is seen in the last line of the table. It will also be

noticed that the variable choice (A,B,C) has a w0 coefficient

of i as wello This would seem to indicate that this choice

is another promising one for a simple synthesis.

is borne out by the resulting synthesis equation

v = 1 + 4B

which is identical

The conjecture

(4.26)

to that associated with the variable

choice (A,B,C).
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A B C Reference WO, binary w , decimal
Variables o

|

0 0 0

0 1 1

1 1 0

i 0 i

I O 0

I 1 1

0 "i 0

0 O 1

(A, B, C)

(A, _, _)

Cl, _, c)

C_, B, _)

(i, B, c)

C_, _, _)

CA, B, C)

(A, B, _)

O 1 1

1 0 1

0 1 1

O 0 1

0 1 1

1 0 1

O 1 1

0 0 1

3

5

3

1

3

5

3

1

Table 4.2
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To illustrate the concepts thus far presented, consider

the following example:

It is desired to synthesize a three-bit counter that

will begin in state (000), go to (001), and through all odd

binary numbers, then go back to (OlO) and proceed through all

even numbers, returning to (000) from the last reading of

(no). The count sequence is:

A B C

0 0 0

0 0 I

0 I i

I 0 I

i i 1

0 i 0

i 0 0

1 1 0

0 0 0

(4°27)

First of all, notice that position C is the most regular

of the positions and has no low-period:cycles. Therefore, it

should be placed in the leftmost location. The distinction

between positions A and B is somewhat less well defined but
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position A does appear to be more "regular" of the two, as

it contains shorter segments of regularly alternating l's and

O's and undergoes only 4 transitions in the full cycle compared

to 6 for position B. Therefore, the position assignment

will be CAB.

Next, the variable choice must be considered. The w0

values are listed in Table 4.3.

There are 3 choices -- 2 , 4 , and 7 -- for which wO = 1.

Choice 2 will be adopted for this example.

The desired sequence is now written in the new frame of

reference (i.e., with column C complemented, giving V = 4C+2A+B)

and the value of v for each word is entered next to the word.

This is shown in Table 4.4.

The w coefficients are now found as in the previous example:

From @ Wo=l

- C) Wl=O

. (._) w2=o

- (_._)w4 = 3

- (_) w3= 1

- (_) ws: 5

. Qw6-_5

,, ®.7=6

(4.28)
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Choice

o

®

®

®

®

®

@

®

®

C

0

1

1

1

0

0

0

0

A

0

0

0

1

1

0

1

0

B

0

0

1

0

1

0

1

0

Reference

Variables

(C, A, B)

(_, A, B)

(C, A, B)

CB, _, B)

C_, _, B)

(C, A, B)

Co, _, B)

Cc, _, B)

"o

|

o

4

3

1

6

3

1

3

Table 4.3
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Row

|

|

®

®

®

®

®

®

A B

1 0 0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 1

1 1 0

i I i

V

4

1

1

1

2

1

1

5

Composition

|

_o+_

"o

w0 + w1

w0 + w2

w0 + w2 + w_ + w6

Table 4.4
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The basic synthesis equation is therefore

v = 1 + 3C + AB + 5CB + 5_A + 6CBA (4.29)

Remembering all coefficients are in mod 8 form, equation

(4.29) can now be manipulated algebraically in order to

render an expression that lends itself well to direct implementa-

tion. Such a form should contain to the greatest possible

extent expressions that are generated as transition pulses during

the addition of l, such as B = _B ' _ = _B ' BA = _A ' BA =

etc. It should also be as free as possible of expressions

that must be separately generated, such as C, CB, etc. Finally,

the coefficients of the terms should contain as few l's as

possible, preferably one. This will minimize timing problems.

For the present synthesis, such a form is

v = 1 + 4CBA+ CBA + 3C_ (4.30)

The first three terms are very simple to implement° A

partial synthesis based on these terms is shown in Figure 4.3.

Feedback line _ performs the function of adding CBA, since

there is a _ pulse produced when i is added to an initial

reading of Oll, and its connection back to stage B corresponds

to an addition of 1 in such a case.

Line _, the set input to stage C replacing the original
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trigger input, can be explained as follows: For an initial

state _AB, the addition of 1 will produce a carry signal _A

which would normally trigger stage C. But the term 4CAB

indicates that an additional 4 should be added in such a case,

or in other words stage _ should be triggered again, voiding

the effect of the original trigger. Rather than perform

this cumbersome operation_ it is easier simply to avoid either

transition when the initial state of _ is Io This is done

simply by changing the trigger input to a set input.

There remains yet the problem of implementing the rest

of the synthesis° The present circuit functions properly

everywhere except, of course, when the initial state is CAB

(i.eo lOO). Here, stage C should be reset and stage B should

be prevented from going to a stable state of 1 as it would

do in the present circuit o The resetting of stage _ is

best accomplished directly at event time Ot by the signal _L_p

generated by means of an AND gate and applied to the reset

input. (This signal will appear also for an initial state

of 000, but will have no effect since it is a reset signal).

The action of stage B is best corrected by blocking the

command signal p from its trigger input when the circuit is

in the lOO state° Allowing a transition and correcting
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subsequently is not advisable, primarily because the level

signal B is being used to form the signal _tBp previously men-

tioned. The required signal blockage is specified by

ABp = (C_)p = (C + A + B)p (4.31)

The most economical method of implementing this requirement,

componentwise, is by a T input:

TB p = (C + A + B) p (4°32)

As a further measure toward component economy let the

feedback line from stage _ to stage B (labeled _ in Figure 4.3)

be moved from the trigger input of B to its set input. The

effect of the line remains the same since the state of stage

B is always 0 when a pulse appears on line Q , yet the need

for an additional OR gate at the input to stage B is thus

obviated o

The final form of the synthesized circuit is shown in

Figure 4.4. Due to the liberal use of set and reset inputs,

this circuit is highly stable_ The reduced connection

matrices are
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I

T
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(4.33)

0

The zero rows for stages B and A indicate that these

stages cannot form part of an umstable loop. Yet, the loop

term CAtB2t_ t indicates they are necessary for the only

possible unstable loop the circuit could describe.

Therefore, it follows that the circuit is inherently

stable.

The subinterval analysis for the circuit is shown below.

_ t I 2tl Stl 4t

P iP _ P ip" IP

(oo0)0oo oo--- I --- I II

I - I

_ _c o o A÷_cI_n--_ ,o 'c_oi___
_A 0 _ B 0 0 'B(A+B+C)=BI 0 lO Ij_.AS_

(4.34)

The logic of the circuit is given by
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c, = c e_3 • cAB = _B+ ic +Bc

B' = B • (A+B+C) OCAB = A_ + AC + _C (4.35)

A' = A O B = AJ_+AB

The examples thus far treated have been confined to the

non-redundant case. That is, the desired count sequence

contained every one of the 2npossible n-bit words. Very

often, however, this is not the case° Instead, there are r

redundant combinations, where r -=2 n , to which there

correspond r equations of the form

mj CA, B, C, .....) = O (4.36)

as was pointed out on page 119. It was also indicated that

to each redundant word, any value of v may be assigned. As a

result, the values of the w coefficients are no longer unique

but are rather linearly dependent on a set of r arbitrary

constants. To demonstrate how this case is treated, a

typical synthesis problem will now be considered:

A 5211 BCD (Binary Coded Decimal) counter is to be designed.

The required count sequence is shown in Table 4.5. Examining

the periodic characteristics of the various stages, it is found
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ABCD COMPOSITION

0000

0001

0011

0110

0111
lion-

redundant 1000

words
I001

i011

iii0

1.111

-_I0--_O--

0010

0100

0101
redundant
wor_ i010

ii00

ii01

_/

a _+_
b _+_

e _+_+_+_a

Table _'o5
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that all positions are already in an acceptable order.

Similarly, the choice of variables appears excellent, with a

w0 of 1 and the values of v indicating small positive increments

throughout° The six redundant combinations are listed underneath

the required sequence and symbols a through f have been chosen

to represent the corresponding values of v. These values are

arbitrary, with this exception: Let it be specified that if

the counter ever assumes a redundant state, as a result of a

spurious input, it will return to a permissible state in the

next count. This error-correcting feature will be considered

after a preliminary synthesis has been completed.

Table 4°6 lists the w coefficients (shown with their

corresponding exterms for easier reference) obtained from

Table 4°5° All but Wo, Wl, w8, and w9 are seen to be linearly

dependent on one or more of the six arbitrary constants a through

fo Clearly, the selection of the values for these entities

will greatly affect the simplicity of the synthesis. Since

w0 = l, the exterms that are easily available in pulse form

are D, CD, BCD, and ABCD. On the other hand, quantities such

as B, C, AB, etc., are difficult to obtain without gating and

every attempt should be made to make their coefficients vanish.

For this synthesis, the best choice of constants by far is
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w Coefficient Exterm Value

"o

"8

,%

"2

,%

"12

"1o

w6

_2

wl3

Wll

"7

wl5

1

A

B

C

D

AB

AC

AD

BC

BD

CD

ABC

ABD

ACD

BCD

ABCD

1

0

b-i

a-I

1

e-b

d-a

0

2-a-b

c-b-i

Z-a

a+b-e-d

f+b-c-e

a-d

a+b-c-2

c+d+e-a-b-f

Table 4.6
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a = I

b = i

c = 2

d = I

e = 1

f = 2

(4.36)

The resulting synthesis equation is

v = 1 + D + CD - 2BCD (4°37)

This may be manipulated as follows:

v = 1 + D(I + C) - 2BCD (4.38)

= 1 + D(2C+_) - aBCD (4.39)

= 1 + _D + 2CD- 2BCD (4.40)

= 1 + CD + 2CD(I-B) (4.41)

= 1 + _D+ 2_CD (4.42)

Equation (4.42) is very easy to implement. In the addition

of l, CD produces a _C pulse at event time 3t, while BCD

produces a _B pulse at 4to To help matters, both signals cannot

occur in the same count and neither signal interferes with

the addition of lo The term CD indicates _C must be fed back

to stage D to add an extra I. Since stage D is always in the 0

state in such a case (the _C was generated by a _D pulse) this

signal will be applied to the set input of stage Do
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Similarly, the term 2BCD indicates _B must be fed back

to stage C in order to add an extra 2. Again, since _B was

generated by a _ C signal, stage C must be in the O state, and

the feedback signal may therefore be applied at the set input

of stage C.

The specifications for the synthesized circuit are

TD = p

t
sD = _c

'c: _t
t

Sc - O(B

TA = _t

(4.43)

As in the previous example, the circuit is highly stable

due to the use of set inputs in the feedback loops. The

reduced connection matrices are

_CS tr = _3rt = _O_ (4.44)

2t_C]r

A D _O O

clOTOA o°o°1
(4.45)
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A D o o o

A c o o o.
A B o o o

n A 0 0
o

(4.46)

A A

The empty /_A and _B rows indicate that neither stage A

nor B can be part of an unstable loop. This makes C stable

since its only possible loop depends on B. The stability of C,

in turn, establishes that of D for the same reason.

The synthesized counter is shown in Figure 4.5. The

subinterval analysis appears below

D_ o o\

0 c_ o

C 0 0

o S O/

I_c

p J pt I p2tlp3t Ip4t
l I

1 io i_Io

o o c_lo I

o Io Io ,o
I I I---, I I (4.47)

At this point, the problem of error correction may be

taken up. From the subinterval analysis in (4.47) it may be

seen that redundant states lead to the following transitions

in response to p:
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4
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Redundant state Next state Correction OK?

0010 O011 Yes

01OO 0101 No

0101 0111 Yes

i010 I011 Yes

Ii00 ii01

IiO1 IIii Yes

It is apparent that the circuit's present ability to

correct errors is satisfactory except for the redundant

words (0100) and (iiOO). For these words, one more count

is required to bring the counter into a permitted state.

Therefore, additional correction must be provided for these

two cases. The simplest way of doing this is to generate an

an additional command pulse when these two words are present.

The (O100)-_-(0101) and (Ii00)-_-(iiO1) transitions are

characterized by B _D" This can be easily obtained as a

pulse by means of an AND gate and fed back to D for an

additional command pulse. Since D is always in the 1 state

when this signal is applied, a reset input may he used. The

revised circuit is shown in Figure 4°6° It remains highly

stable, like its simpler version in Figure 4.5.
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I

c:

6

_o_
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Whether or not the one-count error correction feature

is worth the added cost for the circuit is a matter to be

decided by the performance requirements. Clearly, if spurious

inputs occur rarely enough to make occasional two-count error

correction tolerable, the very economical, gateless circuit

shown in Figure 4.5 is eminently satisfactory.

The synthesis technique presented in this chapter is

predicated on the contention that a standard binary adder

can be modified to count in any other code within its

capacity. The ease with which this adaptation is made depends

on the character of the code in question. Regardless of the

code, however, the synthesis equation represented by the

weighted exterm expansion for v is rarely in a form that is

directly implementable. Almost without exception, such a

direct implementation would be so costly in terms of logic

and so fraught with timing problems that no justification

could exist for its use even from the standpoint of mathematical

elegance. Yet, as was seen in the examples presented in

this chapter, a well-chosen algebraic manipulation of the

basic weighted-exterm synthesis equation may yield a form

that points clearly and unequivocally toward some simple method

of implementation by transition coupling° As to how such

forms are generated, no clear-cut strategy is known for this
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purpose. The modeof attack exemplified by Equations 4.36 -

4.42 is based entirely on heuristic reasoning and generally

improves with experience, as easily implementable forms become

increasingly easier to recognize. As a rule, if a sizable

portion of the synthesis equation appears in a form that is

easily and economically implementable, such an implementation

should be made and a superposition of less economical corrections

for the remainder of the synthesis should be attempted.



V. CONCLUSIONS AND RECOMMENDATIONS

The guiding purpose of this study has been the development

of a logic rationale whose structure would be capable of

accomodating the transition-coupled asynchronous counter. Its

practical role would be to place the analysis and synthesis

of this often-used device on a formal foundation suitable for

exploitation by the engineer.

The emphasis in this paper on the counter rather than

on its multi-input generalization constitutes a restriction

of a motivational, rather than conceptual, nature: With

the exception of certain simple arithmetic units, transition-

coupled multi-input circuits are virtually unheard of today,

primarily because of extremely poor reliability.

Nevertheless, the mathematical concepts of subinterval

logic and the practical techniques associated with it are

capable of being extended to the general multi-input case.

In anticipation of a time when engineering objectives will

warrant such extension, some of the basic groundwork for it

is here presented in way of a recommendation for further study:

As was seen in Chapter III, the action of a transition-

coupled counter is fully determined by:

- 148 -
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The connection matrix _CJ ta. $

b. The starting state, and

c. The zeroth transition vector [To_

However, the pule e input vector at time Ot determines

.only the zeroth transition vector. It has no effect

on _C_ and the question of how a circuit camewhatsoever

to be in a particular starting state is certainly irrelevant

to the analysis.

Now, the circuit analysis algorithm developed in

Chapter III yields a timing chart of transitions by every

stage as a function of the starting state, for one particular

input vector characterized by the zeroth vector _O_ " Such

a chart thus furnishes a complete description of the switching

action of a counter.

It is now but a brief step to extrapolate this reasoning

to the general case° A different input vector generates a

different zeroth vector _oland corresponding timing chart.

The various charts could then be combined in the following

basically equivalent ways:

a. Transition matrix method: Instead of computing a

transition vector at each event time, kt, a n-

column transition matrixI_ t is computed, each
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b.

of whose columns is a transition vector

corresponding to a particular input. Being

simply a superposition of n timing charts,

the method tends to become notationally

cumbersome as n increases°

Direct superposition method: In this method,

the transition vector is expressed as the union

of transition vectors associated with a set of

independent inputs. For example, letting a0

and aI be two independent inputs, (e.g. addend

digits to a binary adder) the k_ transition vec-

tor can then be given by

(5oi)

As an illustration, the subinterval analysis for a 3-bit

binary adder with input lines a0 and aI -- for the purpose

of addition of _ 1 + a0 to the contents of the adder -- is

shown on the next page;
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(5.a)

As ma_ be seen, any vector in (5°2) can be easily expressed

in the form of (5ol) since its general form is available.

Unfortunately, obtaining a general form is usually not as

simple as it has been in this particularly tractable case.

The principal difficulty lies, of course, in referring each

non-underlined literal to event time Ot. The underlined form

of this literal will now depend not only on the starting

state of the circuit but also on the values of the input

variables -- most often in increasingly complex relationships.

For example, (B • _al)aO _ shows such a dependency. Were

the circuit somewhat more complicated, and the term ABC, say,

appeared somewhere in the succeeding transition vector, then

the underlined counterpart of A would depend on a0 and al,

according to whose values (B • _al)aO_ can be equal to O,

BC, or BC. The general expression for ABC would be
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turn, would generate an even more complicated expression

in some succeeding transition vector, and so forth.

In brief, what is seriously needed is a new, sophisticated

form of "shorthand" notation, analogous to that used in the

counter analysis technique, which would be capable of

rendering a compact yet concise description of the action

of a multi-input transition-coupled circuit.

It might also be noted that the stability question

presents no new problem in the multiple-input case, for as

was indicated in Chapter II, inherent stability is a character-

istic of the connection matrix, and is independent of external

inputs, assuming, of course, that the inputs are themselves

stable o

Naturally, stability remains a major engineering problem

in its own right, even for the single-input case, simply

because of the tedious process involved in ascertaining it.

Formulation of a simple general stability test for transition-

coupled circuits, therefore, constitutes one of the principal

topics in which further research is recommended.

Another objective toward which further study should be

directed is that of broadening the mathematical model of the

transition-coupled circuit and correspondingly extending
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analysis techniques where needed° The mathematical concepts

of subinterval logic, introduced in Chapter II can be seen

to envision a limited type of transition coupling. Specifically,

the interstage delays are very nearly the same throughout the

circuit and are much larger than those associated with the

combinational logic components in the circuit° This model

corresponds well with the majority of the transition-coupled

circuitry in use today.

The peculiar character of the logic subinterval -- the

dominant concept of Chapter II -- does lead to one important

reservation from the mathematical as well as practical stand-

point, arising from the nature of the asynchronism embodied

in the time increment 8k <<t during which signals generated

in the past arrive at their destinations. In its present

formulation, subinterval logic requires that 5k remain very

small compared to t throughout the switching action of the

circuit between successive stable states° Only in this way

can every memory transition be unambiguously related to an

"event time." Yet it is a fact that this quantity will tend

to grow with the event time. Namely, recalling that t

has been specified as the longest interstage delay in the

circuit, the only general statement regarding 8k that can be

made is
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O __ _k _ kSl (5°3)

This follows because the earliest signal arrival

associated with event time kt would be the result of the

shortest delay in the circuit repeated k times° This is given

by k(t-61)o The latest first arrival would be at time kt

itself, corresponding to a k-fold repetition of the longest

delay in the circuit.

Since bk is the difference between kt and the time of

the first arrival, it is seen that the range of Bk is

described by equation (5.1)o

It must be concluded, then, that there is an implicit

limitation on the structure of the circuits treated by

subinterval logic. For should the earliest pulse signal

arrival for an event time occur before all level signals

associated with this event time have ahd time to stabilize,

an incorrect result will be reached° To determine the simplest

requirement for prevention of this critical race condition,

let I" max represent the longest level signal rise time in

the circuit. This may be the sum of the rise times of a

memory unit and a cascade of gates, or simply the rise time

of the slowest memory unit.
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Nowconsider an event associated with event time kt.

Stability of all level signals associated with this time can

be guaranteed no sooner than (k-l)t + _" . The earliest
max

pulse signal associated with time kt, arriving as early as

kt-k81 , must find the level signals in the circuit stable.

As a result, the simplest requirement for proper operation

of the circuit at time kt (providing it operated properly

up to this time) is

or

(kt - k8 l) > (kt - t + _'max ) (5.4)

t -- _-max

bI < (5°5)
k

Finally, since the circuit must function properly for

any transition, equation (5°5) becomes

t - _-max

_l < M (5.6)
max

where Mma x is the largest number of event times (not including

Ot) the counter in question requires for transition between

two stable states.

What this requirement means is simply that the larger

the rise times in the circuit and the number of event times

required by the circuit to go between stable states, the
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smaller must be the quantity 81' i.e. the more nearly equal

must be the interstage delays.

The requirement represented by inequality (5.4) has been

assumed satisfied throughout the preceding study. Nevertheless,

it should be realized that in some cases, this inequality

may conceivably not be easy to satisfy° Picture, for example,

a circuit with a complex feedback structure and a correspondingly

large Mma x (eogo, the circuit in Figure 2o6, with an Mma x of 6).

If the circuit contained in addition relatively long rise

times, the 61 required for reliable operation according to

the subinterval logic model might be so small as to introduce a

new parameter into the design of the interstage combinational

circuitry° Specifically, the objective of the design would

now become the provision of the required uniformity in the

interstage delays, in addition to the minimization of logic

circuitry or component cost.

Circuit synthesis with uniform interstage delay time

as a design parameter was not considered in this paper° It

is recommended as a topic for further study.

Another area in which additional investigation is suggested

is an extension of the subinterval logic philosophy to include

circuits with different interstage delays. The problem is
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meaningful not only because different types of memory units

could be used in the same circuit but also because high

switching speeds tend to make delays encountered in gating

more and more significant in relation to the interstage delay.

Rather than forcibly providing a uniform interstage delay,

designs can be developed which take advantage of the non-

uniformity and the subinterval analysis technique can be

extended to accommodate ito What is required, basically,

is a subinterval length t compatible with all delays and a

consistent notation to identify the number of event times

required for various actions in the circuit, as well as the

availability of a logical quantity as a signal. (For example,

a pulse applied at event time kt to a gate with a delay of 2t

cannot be expected at the output of the gate until event

time (k+2) t o)

Perhaps the most challenging area for further research,

however, suggests itself in Chapter IV. In that chapter,

the binary adder was chosen as a "model" for the synthesis of

transition-coupled counters simply because it happens to be

a multi-input transition coupled circuit whose design is well

known, whose simplicity, reliability, and freedom from timing

problems are unquestionable, and whose action is easy to

describe in an extremely compact notation, that of standard

algebra.
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Yet, it is a fact that the standard binary adder is not

an ideal model for all types of counters° For example, a

general two-decade BCDcounter would be far simpler to design

as a transition-coupled unit if an 8421 BCD adder, say, were

used as a model than if the standard binary adder were employed.

A significant contribution could therefore be made if a

convenient set of models were developed (perhaps by using the

binary adder as a preliminary model) for the purpose of circuit

synthesis° For usefulness, these models would have to be free

of timing problems, their physical and logical properties

would have to be thoroughly analyzed, and a consistent and

convenient notation should be available to describe their

action° Hopefully, the outgrowth of this development would

be algorithms to determine the best model for a synthesis, the

optimum arrangement of digit positions and the best choice

of variable assignments for the new circuit.

A contribution with considerably farther-reaching

implications could, in turn, evolve from the above developments:

A unified model adaptation algorithm, by means of which any

circuit already designed could readily play the role of

model for one to be synthesized°
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Summary

A logic capable of describing the transition-coupled

asynchronous counter with approximately uniform interstaEe

delays was developed in Chapter II. It has been named

subinterval logic° A method of ascertaining the stability

of a transition-coupled counter, using subinterval logic,

was also described in Chapter II. A simple subinterval

!og_-c tec_nique for the an_ysis of a stable transition-

coupled counter was derived in Chapter III. A standard-

algebraic method for synthesizing transition-coupled counters

was described in Chapter IV. Recommendations for further

study were presented in Chapter V.
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